West China Journal of Stomatology ›› 2019, Vol. 37 ›› Issue (1): 92-96.doi: 10.7518/hxkq.2019.01.018
Previous Articles Next Articles
Received:
2018-02-15
Revised:
2018-07-08
Online:
2019-02-01
Published:
2019-02-01
Contact:
Weihua. Guo
E-mail:guoweihua943019@163.com
Supported by:
CLC Number:
Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report[J]. West China Journal of Stomatology, 2019, 37(1): 92-96.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Langer R, Vacanti JP . Tissue engineering[J]. Science, 1993,260(5110):920-926.
doi: 10.1126/science.8493529 URL |
[2] |
Zulkifli FH, Hussain FSJ, Zeyohannes SS , et al. A facile synjournal method of hydroxyethyl cellulose-silver nanopar-ticle scaffolds for skin tissue engineering applications[J]. Mater Sci Eng C Mater Biol Appl, 2017,79:151-160.
doi: 10.1016/j.msec.2017.05.028 URL |
[3] | 钱李科, 钱明元 . 猪脱细胞真皮与人表皮干细胞构建组织工程皮肤修复全层皮肤缺损[J]. 中国组织工程研究, 2017,21(2):227-231. |
Qian LK, Qian MY . Treatment outcomes of human epider-mal stem cells/porcine acellular dermal tissue-engineered skin in the repair of full-thickness skin defects[J]. Clin J Tissue Eng Res, 2017,21(2):227-231. | |
[4] |
Chang SH, Huang HH, Kang PL , et al. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering[J]. Acta Biomater, 2017,63:261-273.
doi: 10.1016/j.actbio.2017.09.028 URL |
[5] |
Wang PC, Takezawa T . Reconstruction of renal glomerular tissue using collagen vitrigel scaffold[J]. J Biosci Bioeng, 2005,99(6):529-540.
doi: 10.1263/jbb.99.529 URL |
[6] | 高群, 刘宇娜, 吴杰 , 等. 用MDCK细胞为种子细胞体外构建组织工程化肾小管片层的实验研究[J]. 解放军医学杂志, 2008,33(6):664-668. |
Gao Q, Liu YN, Wu J , et al. Reconstruction of tissue-engi-neered renal tubules using MDCK cells[J]. Med J Chin PLA, 2008,33(6):664-668. | |
[7] |
Hashemi-Beni B, Khoroushi M, Foroughi MR , et al. Tissue engineering: dentin-pulp complex regeneration approaches (A review)[J]. Tissue Cell, 2017,49(5):552-564.
doi: 10.1016/j.tice.2017.07.002 URL |
[8] |
Liu Y, Lim J, Teoh SH . Review: development of clinically relevant scaffolds for vascularised bone tissue engineering[J]. Biotechnol Adv , 2013,31(5):688-705.
doi: 10.1016/j.biotechadv.2012.10.003 URL |
[9] |
Yang KC, Wang CH, Chang HH , et al. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration[J]. J Tissue Eng Regen Med, 2012,6(10):777-785.
doi: 10.1002/term.v6.10 URL |
[10] |
Li J, Baker BA, Mou X , et al. Biopolymer/calcium phos-phate scaffolds for bone tissue engineering[J]. Adv Healthc Mater, 2014,3(4):469-484.
doi: 10.1002/adhm.v3.4 URL |
[11] | 杨琳, 管晓燕, 陈黎明 , 等. 智能水凝胶在骨类硬组织再生和修复中的应用[J]. 中国组织工程研究, 2016,20(3):430-434. |
Yang L, Guan XY, Chen LM , et al. Application of intelli-gent hydrogels in bone regeneration and repair[J]. J Tissue Eng Res, 2016,20(3):430-434. | |
[12] |
Kim SH, Turnbull J, Guimond S . Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteo-glycan and growth factor receptor[J]. J Endocrinol, 2011,209(2):139-151.
doi: 10.1530/JOE-10-0377 URL |
[13] |
Aitken KJ, Bägli DJ . The bladder extracellular matrix. Part Ⅱ: architecture, development and disease[J]. Nat Rev Urol, 2009,6(11):596-611.
doi: 10.1038/nrurol.2009.201 URL |
[14] |
Kozel BA, Rongish BJ, Czirok A , et al. Elastic fiber forma-tion: a dynamic view of extracellular matrix assembly using timer reporters[J]. J Cell Physiol, 2006,207(1):87-96.
doi: 10.1002/jcp.v207:1 URL |
[15] |
Gosline J, Lillie M, Carrington E , et al. Elastic proteins: biological roles and mechanical properties[J]. Philos Trans R Soc Lond B Biol Sci, 2002,357(1418):121-132.
doi: 10.1098/rstb.2001.1022 URL |
[16] |
Rauscher S, Pomès R . Structural disorder and protein elas-ticity[J]. Adv Exp Med Biol, 2012,725:159-183.
doi: 10.1007/978-1-4614-0659-4 URL |
[17] |
Li R, Guo W, Yang B , et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue rege-neration[J]. Biomaterials, 2011,32(20):4525-4538.
doi: 10.1016/j.biomaterials.2011.03.008 URL |
[18] |
Zhang J, Hu ZQ, Turner NJ , et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vas-cular network template[J]. Biomaterials, 2016,89:114-126.
doi: 10.1016/j.biomaterials.2016.02.040 URL |
[19] |
Um IW, Kim YK, Mitsugi M . Demineralized dentin matrix scaffolds for alveolar bone engineering[J]. J Indian Prostho-dont Soc, 2017,17(2):120-127.
doi: 10.4103/jips.jips_62_17 URL |
[20] |
Tabatabaei FS, Tatari S, Samadi R , et al. Surface characte-rization and biological properties of regular dentin, demi-neralized dentin, and deproteinized dentin[J]. J Mater Sci Mater Med, 2016,27(11):164.
doi: 10.1007/s10856-016-5780-8 URL |
[21] | Chun SY, Lee HJ, Choi YA , et al. Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration[J]. Tissue Eng Part A, 2011,17(1/2):181-191. |
[22] |
Ravindran S, George A . Dentin matrix proteins in bone tissue engineering[J]. Adv Exp Med Biol, 2015,881:129-142.
doi: 10.1007/978-3-319-22345-2 URL |
[23] |
Gericke A, Qin C, Sun Y , et al. Different forms of DMP1 play distinct roles in mineralization[J]. J Dent Res, 2010,89(4):355-359.
doi: 10.1177/0022034510363250 URL |
[24] |
Hao J, Narayanan K, Muni T , et al. Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation[J]. J Biol Chem, 2007,282(21):15357-15365.
doi: 10.1074/jbc.M701547200 URL |
[25] |
Hao J, Zou B, Narayanan K , et al. Differential expression patterns of the dentin matrix proteins during mineralized tissue formation[J]. Bone, 2004,34(6):921-932.
doi: 10.1016/j.bone.2004.01.020 URL |
[26] |
Hao J, Ramachandran A, George A . Temporal and spatial localization of the dentin matrix proteins during dentin bio-mineralization[J]. J Histochem Cytochem, 2009,57(3):227-237.
doi: 10.1369/jhc.2008.952119 URL |
[27] |
Jiao L, Xie L, Yang B , et al. Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration[J]. Biomaterials, 2014,35(18):4929-4939.
doi: 10.1016/j.biomaterials.2014.03.016 URL |
[28] |
Cooper LF . The current and future treatment of edentulism[J]. J Prosthodont, 2009,18(2):116-122.
doi: 10.1111/jopr.2009.18.issue-2 URL |
[29] | Jernvall J, Thesleff I . Tooth shape formation and tooth renewal: evolving with the same signals[J]. Development, 2012,139 |
( 19):3487-3497. | |
[30] |
Filiatrault J, Desrosiers J . Coping strategies used by seniors going through the normal aging process: does fear of falling matter[J]. Gerontology, 2011,57(3):228-236.
doi: 10.1159/000314529 URL |
[31] | Guo W, He Y, Zhang X , et al. The use of dentin matrix scaf-fold and dental follicle cells for dentin regeneration[J]. Bio-materials, 2009,30(35):6708-6723. |
[32] |
Na S, Zhang H, Huang F , et al. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet[J]. J Tissue Eng Regen Med, 2016,10(3):261-270.
doi: 10.1002/term.v10.3 URL |
[33] |
Yang B, Chen G, Li J , et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold[J]. Biomaterials, 2012,33(8):2449-2461.
doi: 10.1016/j.biomaterials.2011.11.074 URL |
[34] |
Ji B, Sheng L, Chen G , et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regenera-tion by cell homing[J]. Tissue Eng Part A, 2015,21(1/2):26-34.
doi: 10.1089/ten.tea.2014.0043 URL |
[35] |
Luo X, Yang B, Sheng L , et al. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine[J]. Biomaterials, 2015,57:59-72.
doi: 10.1016/j.biomaterials.2015.03.062 URL |
[36] |
Nerem RM, Sambanis A . Tissue engineering: from biology to biological substitutes[J]. Tissue Eng, 1995,1(1):3-13.
doi: 10.1089/ten.1995.1.3 URL |
[37] |
Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction[J]. Transpl Immunol, 2004, 12(3/4): 367-377.
doi: 10.1016/j.trim.2003.12.016 URL |
[38] |
Badylak SF . The extracellular matrix as a biologic scaffold material[J]. Biomaterials, 2007,28(25):3587-3593.
doi: 10.1016/j.biomaterials.2007.04.043 URL |
[39] |
Park KM, Woo HM . Porcine bioengineered scaffolds as new frontiers in regenerative medicine[J]. Transplant Proc, 2012,44(4):1146-1150.
doi: 10.1016/j.transproceed.2012.03.043 URL |
[40] | Li H, Sun J, Li J , et al. Xenogeneic Bio-Root prompts the constructive process characterized by macrophage pheno-type polarization in rodents and nonhuman primates[J]. Adv Healthc Mater, 2017,6(5). doi: 10.1002/adhm.201601112. |
[41] | Sun J, Li J, Li H , et al. tBHQ suppresses osteoclastic resorp-tion in xenogeneic-treated dentin matrix-based scaffolds[J]. Adv Healthc Mater, 2017,6(18). doi: 10.1002/adhm.201700127. |
[42] |
Koga T, Minamizato T, Kawai Y , et al. Bone regeneration using dentin matrix depends on the degree of demineraliza-tion and particle size[J]. PLoS One, 2016,11(1):e0147235.
doi: 10.1371/journal.pone.0147235 URL |
[43] |
de Oliveira GS, Miziara MN, Silva ER , et al. Enhanced bone formation during healing process of tooth sockets filled with demineralized human dentine matrix[J]. Aust Dent J, 2013,58(3):326-332.
doi: 10.1111/adj.2013.58.issue-3 URL |
[44] | Kim YK, Kim SG, Um IW , et al. Bone grafts using autoge-nous tooth blocks: a case series[J]. Implant Dent, 2013,22 |
( 6):584-589. | |
[45] |
Andersson L, Ramzi A, Joseph B . Studies on dentin grafts to bone defects in rabbit tibia and mandible, development of an experimental model[J]. Dent Traumatol, 2009,25(1):78-83.
doi: 10.1111/edt.2009.25.issue-1 URL |
[46] |
Qin X, Raj RM, Liao XF , et al. Using rigidly fixed autoge-nous tooth graft to repair bone defect: an animal model[J]. Dent Traumatol, 2014,30(5):380-384.
doi: 10.1111/edt.2014.30.issue-5 URL |
[47] |
Gomes MF, Abreu PP, Morosolli AR , et al. Densitometric analysis of the autogenous demineralized dentin matrix on the dental socket wound healing process in humans[J]. Braz Oral Res, 2006,20(4):324-330.
doi: 10.1590/S1806-83242006000400008 URL |
[48] | Minamizato T, Koga T , I T, et al. Clinical application of autogenous partially demineralized dentin matrix prepared immediately after extraction for alveolar bone regeneration in implant dentistry: a pilot study[J]. Int J Oral Maxillofac Surg, 2017,47(1):125-132. |
[49] |
Chen J, Cui C, Qiao X , et al. Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration[J]. J Tissue Eng Regen Med, 2017,11(12):3428-3436.
doi: 10.1002/term.2256 URL |
[50] |
Smith JG, Smith AJ, Shelton RM , et al. Antibacterial acti-vity of dentine and pulp extracellular matrix extracts[J]. Int Endod J, 2012,45(8):749-755.
doi: 10.1111/iej.2012.45.issue-8 URL |
[1] | Enimubai Daerya, Zhang Di, Awuti Gulinuer. Comparison of the osteogenic effects of demineralized dentin matrix and acellular dentin matrix [J]. West China Journal of Stomatology, 2024, 42(1): 28-36. |
[2] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[3] | Zhou Jian, Su Yingying, Wang Song-ling. Progress and perspectives on cell-free regenerative endodontic therapy [J]. West China Journal of Stomatology, 2022, 40(1): 1-6. |
[4] | Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration [J]. West China Journal of Stomatology, 2021, 39(6): 624-632. |
[5] | Wang Yanan, Wu Xuan, Jia Tingting, Feng Yao, Liu Shiyue, Xu Xin, Zhang Dongjiao. Effect of type 2 diabetes mellitus on mandibular bone regeneration and the expression of T helper cell 17/regulat-ory T cell-related factors in mice [J]. West China Journal of Stomatology, 2021, 39(6): 642-650. |
[6] | Chen Luyi, Huang Min, Wu Jiaqi, Luo Jun. Guided bone regeneration-assisted orthodontic treatment for closing the space of missing central incisors [J]. West China Journal of Stomatology, 2021, 39(4): 482-488. |
[7] | Jiang Xinquan. Advances in biomimetic modification of materials for oromaxillofacial bone regeneration and dental implant [J]. West China Journal of Stomatology, 2021, 39(2): 123-128. |
[8] | Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration [J]. West China Journal of Stomatology, 2020, 38(5): 571-575. |
[9] | Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells [J]. West China Journal of Stomatology, 2020, 38(3): 324-329. |
[10] | Zhao Dan,Li Yueheng,Yang Zhengyan,Cai Ting,Wu Xiaoyan,Xia Yu,Zhou Zhi. Effect of the local application of stem cells on repairing facial nerve defects: a systematic review [J]. West China Journal of Stomatology, 2020, 38(1): 59-68. |
[11] | Tiantian Yu,Jin Liu,Junjing Yin,Xiangna Xu,Shengjie Yan,Jing Lan. Effects of concentrated growth factors on relieving postoperative reaction of guided bone regeneration in the esthetic zone [J]. West China Journal of Stomatology, 2019, 37(4): 398-402. |
[12] | Yunjie Li,Binhong Teng,Yanhong Zhao,Qiang Yang,Lianyong Wang,Ying Huang. Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(3): 253-259. |
[13] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[14] | Yunjie Li,Yanhong Zhao,Qiang Yang. Development of cartilage extracellular matrix in cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(2): 220-223. |
[15] | Feng Liao, Shibo Liu, Yao Liu, Hanghang Liu, Jian Hu, Xian Liu. Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariec-tomized rats [J]. West China Journal of Stomatology, 2018, 36(4): 367-371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||