West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (6): 624-632.doi: 10.7518/hxkq.2021.06.002
Previous Articles Next Articles
Received:
2021-04-20
Revised:
2021-09-17
Online:
2021-12-01
Published:
2021-12-03
Contact:
Lin Yunfeng
E-mail:yunfenglin@scu.edu.cn
Supported by:
CLC Number:
Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration[J]. West China Journal of Stomatology, 2021, 39(6): 624-632.
Add to citation manager EndNote|Ris|BibTeX
1 | Wang QF, Yan JH, Yang JL, et al. Nanomaterials promi-se better bone repair[J]. Mater Today, 2016, 19(8): 451-463. |
2 | Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg, 1997, 100(2): 297-302, discussion 303-304. |
3 | Khademhosseini A, Langer R. A decade of progress in tissue engineering[J]. Nat Protoc, 2016, 11(10): 1775-1781. |
4 | Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016, 83: 363-382. |
5 | Seeman NC. Nucleic acid junctions and lattices[J]. J Theor Biol, 1982, 99(2): 237-247. |
6 | Winfree E, Liu F, Wenzler LA, et al. Design and self-assembly of two-dimensional DNA crystals[J]. Nature, 1998, 394(6693): 539-544. |
7 | Yan H, Park SH, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires[J]. Science, 2003, 301(5641): 1882-1884. |
8 | Zheng JP, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal[J]. Nature, 2009, 461(7260): 74-77. |
9 | Li TT, He NY, Wang JH, et al. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters[J]. RSC Adv, 2016, 6(27): 22839-22844. |
10 | Baranski OA, Kalinichenko VV, Adami GR. Increased FOXM1 expression can stimulate DNA repair in normal hepatocytes in vivo but also increases nuclear foci asso-ciated with senescence[J]. Cell Prolif, 2015, 48(1): 105-115. |
11 | Liu C, Huang Y, Shen W, et al. Kinetics of hydroxyapatite precipitation at pH 10 to 11[J]. Biomaterials, 2001, 22(4): 301-306. |
12 | Li J, Li JJ, Zhang J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells[J]. Nanoscale, 2016, 8(15): 7992-8007. |
13 | Lee JH, Shin YC, Jin OS, et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2015, 7(27): 11642-11651. |
14 | Kim TH, Singh RK, Kang MS, et al. Gene delivery na-nocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration[J]. Nanoscale, 2016, 8(15): 8300-8311. |
15 | Chen JH, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube[J]. Nature, 1991, 350(6319): 631-633. |
16 | Scheffler M, Dorenbeck A, Jordan S, et al. Self-assembly of trisoligonucleotidyls: the case for nano-acetylene and nano-cyclobutadiene[J]. Angew Chem Int Ed Engl, 1999, 38(22): 3311-3315. |
17 | Shih WM, Quispe JD, Joyce GF. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron[J]. Nature, 2004, 427(6975): 618-621. |
18 | Zhang YW, Seeman NC. Construction of a DNA-trunca-ted octahedron[J]. J Am Chem Soc, 1994, 116(5): 1661-1669. |
19 | Peng Q, Shao XR, Xie J, et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J]. ACS Appl Mater Interfaces, 2016, 8(20): 12733-12739. |
20 | Shi S, Lin S, Shao X, et al. Modulation of chondrocyte motility by tetrahedral DNA nanostructures[J]. Cell Prolif, 2017, 50(5): e12368. |
21 | Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue rege-neration via regulating chondrocyte phenotype and proli-feration[J]. Small, 2017, 13(12). doi: 10.1002/smll.2016-02770. |
22 | Shi SR, Lin SY, Li Y, et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes[J]. Chem Commun (Camb), 2018, 54(11): 1327-1330. |
23 | Xie X, Shao X, Ma W, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018, 10(12): 5457-5465. |
24 | Ma WJ, Shao XR, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proli-feration and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9): 7892-7900. |
25 | Xavier M, Kyriazi ME, Lanham S, et al. Enrichment of skeletal stem cells from human bone marrow using sphe-rical nucleic acids[J]. ACS Nano, 2021, 15(4): 6909-6916. |
26 | Szpalski C, Barbaro M, Sagebin F, et al. Bone tissue engineering: current strategies and techniques—partⅡ: cell types[J]. Tissue Eng Part B Rev, 2012, 18(4): 258-269. |
27 | El Tamer MK, Reis RL. Progenitor and stem cells for bone and cartilage regeneration[J]. J Tissue Eng Regen Med, 2009, 3(5): 327-337. |
28 | Shao XR, Lin SY, Peng Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of me-senchymal stem cells via activation of the Wnt/β-catenin signaling pathway[J]. Nanomed-Nanotechnol Biol Med, 2017, 13(5): 1809-1819. |
29 | Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in wnt/β-catenin signaling in humans and mice[J]. Bone Res, 2013, 1(1): 27-71. |
30 | Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors[J]. Cell Signal, 2007, 19(4): 659-671. |
31 | Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression[J]. J Biol Chem, 2005, 280(39): 33132-33140. |
32 | D’Alimonte I, Lannutti A, Pipino C, et al. Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells[J]. Stem Cell Rev Rep, 2013, 9(5): 642- |
654 | |
33 | Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes[J]. J Mol Endocrinol, 2011, 46(2): R65-R72. |
34 | Zheng LL, Kim HM. Low-Rac1 activity downregulates MC3T3-E1 osteoblastic cell motility on a nanoscale topography prepared on polystyrene substrates in vitro[J]. J Biomed Mater Res A, 2013, 101(6): 1629-1636. |
35 | Seo CH, Furukawa K, Montagne K, et al. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway[J]. Biomaterials, 2011, 32(36): 9568-9575. |
36 | Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process[J]. Cell, 1996, 84(3): 359-369. |
37 | Eisenbarth E, Velten D, Müller M, et al. Nanostructured niobium oxide coatings influence osteoblast adhesion[J]. J Biomed Mater Res A, 2006, 79(1): 166-175. |
38 | Shi SR, Peng Q, Shao XR, et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19353-19363. |
39 | Lin SY, Zhang Q, Zhang T, et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA methylation on Dlg3[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32017-32025. |
40 | Wang F, Yu MJ, Yan XL, et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration[J]. Stem Cells Dev, 2011, 20(12): 2093-2102. |
41 | Phillips MD, Kuznetsov SA, Cherman N, et al. Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays[J]. Stem Cells Transl Med, 2014, 3(7): 867-878. |
42 | Liu J, Chen WC, Zhao ZH, et al. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering[J]. Biomaterials, 2013, 34(32): 7862-7872. |
43 | de Peppo GM, Marcos-Campos I, Kahler DJ, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2013, 110(21): 8680-8685. |
44 | Zhang WB, Walboomers XF, Shi ST, et al. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation[J]. Tissue Eng, 2006, 12(10): 2813-2823. |
45 | Koyama N, Okubo Y, Nakao K, et al. Evaluation of pluripotency in human dental pulp cells[J]. J Oral Maxillofac Surg, 2009, 67(3): 501-506. |
46 | Choi YJ, Lee JY, Chung CP, et al. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells[J]. Int J Nanomedicine, 2012, 7: 5091-5106. |
47 | Bakopoulou A, Leyhausen G, Volk J, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP)[J]. Arch Oral Biol, 2011, 56(7): 709-721. |
48 | Lei M, Li K, Li B, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation[J]. Biomaterials, 2014, 35(24): 6332-6343. |
49 | Jensen J, Kraft DC, Lysdahl H, et al. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro[J]. Tissue Eng Part A, 2015, 21(3/4): 729-739. |
50 | Yang XC, Han GL, Pang X, et al. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo[J]. J Biomed Mater Res A, 2020, 108(12): 2519-2526. |
51 | Tsukamoto J, Naruse K, Nagai Y, et al. Efficacy of a self-assembling peptide hydrogel, SPG-178-gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells[J]. Tissue Eng Part A, 2017, 23(23/24): 1394-1402. |
52 | Zhou M, Liu NX, Zhang Q, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells[J]. Cell Prolif, 2019, 52(3): e12566. |
53 | Zhou M, Gao S, Zhang XL, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions[J]. Bioact Mater, 2021, 6(6): 1676-1688. |
54 | Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway[J]. Nanomed-Nanotechnol Biol Med, 2018, 14(4): 1227-1236. |
55 | Bostrom MP, Camacho NP. Potential role of bone morphogenetic proteins in fracture healing[J]. Clin Orthop Relat Res, 1998(355 ): S274-S282. |
56 | McMahon RE, Wang LN, Skoracki R, et al. Development of nanomaterials for bone repair and regeneration[J]. J Biomed Mater Res B Appl Biomater, 2013, 101(2): 387-397. |
57 | Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376-380. |
58 | Zhao D, Liu MT, Li QS, et al. Tetrahedral DNA nanostructure promotes endothelial cell proliferation, migration, and angiogenesis via notch signaling pathway[J]. ACS Appl Mater Interfaces, 2018, 10(44): 37911-37918. |
59 | Lin SY, Zhang Q, Li SH, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the akt/Nrf2/HO-1 pathway[J]. ACS Appl Mater Interfaces, 2020, 12(10): 11397-11408. |
60 | Kuroshima S, Sasaki M, Sawase T. Medication-related osteonecrosis of the jaw: a literature review[J]. J Oral Biosci, 2019, 61(2): 99-104. |
61 | Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair[J]. J Clin Invest, 2016, 126(2): 509-526. |
62 | Wang Y, Wan C, Deng LF, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development[J]. J Clin Invest, 2007, 117(6): 1616-1626. |
63 | Otrock ZK, Mahfouz RA, Makarem JA, et al. Understanding the biology of angiogenesis: review of the most important molecular mechanisms[J]. Blood Cells Mol Dis, 2007, 39(2): 212-220. |
64 | Zhao D, Cui WT, Liu MT, et al. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angioge-nesis and M2 polarization[J]. ACS Appl Mater Interfaces, 2020, 12(40): 44508-44522. |
65 | Hébert-Blouin MN, Tubbs RS, Carmichael SW, et al. Hilton’s law revisited[J]. Clin Anat, 2014, 27(4): 548-555. |
66 | Mahns DA, Ivanusic JJ, Sahai V, et al. An intact periphe-ral nerve preparation for monitoring the activity of single, periosteal afferent nerve fibres[J]. J Neurosci Metho-ds, 2006, 156(1/2): 140-144. |
67 | Mach DB, Rogers SD, Sabino MC, et al. Origins of ske-letal pain: sensory and sympathetic innervation of the mouse femur[J]. Neuroscience, 2002, 113(1): 155-166. |
68 | Corr A, Smith J, Baldock P. Neuronal control of bone remodeling[J]. Toxicol Pathol, 2017, 45(7): 894-903. |
69 | Elefteriou F. Neuronal signaling and the regulation of bone remodeling[J]. Cell Mol Life Sci, 2005, 62(19/20): 2339-2349. |
70 | Wang XD, Li SY, Zhang SJ, et al. The neural system re-gulates bone homeostasis via mesenchymal stem cells: a translational approach[J]. Theranostics, 2020, 10(11): 4839-4850. |
71 | Gibbons DL, Raine T, Abeler-Dorner L, et al. RGS1 is a key regulator of human T cell migration and a potential target for therapy in Inflammatory Bowel Disease (IBD) [J]. Immunology, 2010, 131: 75. |
72 | Ma WJ, Xie XP, Shao XR, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway[J]. Cell Prolif, 2018, 51(6): e12503. |
73 | Kikuchi T, Matsuguchi T, Tsuboi N, et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors[J]. J Immunol, 2001, 166(5): 3574-3579. |
74 | Reyes-Botella C, Montes MJ, Vallecillo-Capilla MF, et al. Expression of molecules involved in antigen presentation and T cell activation (HLA-DR, CD80, CD86, CD-44 and CD54) by cultured human osteoblasts[J]. J Perio-dontol, 2000, 71(4): 614-617. |
75 | Gu QL, Yang HL, Shi Q. Macrophages and bone inflammation[J]. J Orthop Translat, 2017, 10: 86-93. |
76 | Michalski MN, McCauley LK. Macrophages and skeletal health[J]. Pharmacol Ther, 2017, 174: 43-54. |
77 | Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149. |
78 | Pieters BCH, Cappariello A, van den Bosch MHJ, et al. Macrophage-derived extracellular vesicles as carriers of alarmins and their potential involvement in bone homeostasis[J]. Front Immunol, 2019, 10: 1901. |
79 | Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. |
80 | Wang N, Liang HW, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance[J]. Front Immunol, 2014, 5: 614. |
81 | Nasser MI, Zhu SJ, Huang HL, et al. Macrophages: first guards in the prevention of cardiovascular diseases[J]. Life Sci, 2020, 250: 117559. |
82 | Gao Q, Zhang J, Chen C, et al. In situ mannosylated nanotrinity-mediated macrophage remodeling combats Candida albicans infection[J]. ACS Nano, 2020, 14(4): 3980-3990. |
[1] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[2] | Zhou Jian, Su Yingying, Wang Song-ling. Progress and perspectives on cell-free regenerative endodontic therapy [J]. West China Journal of Stomatology, 2022, 40(1): 1-6. |
[3] | Wang Yanan, Wu Xuan, Jia Tingting, Feng Yao, Liu Shiyue, Xu Xin, Zhang Dongjiao. Effect of type 2 diabetes mellitus on mandibular bone regeneration and the expression of T helper cell 17/regulat-ory T cell-related factors in mice [J]. West China Journal of Stomatology, 2021, 39(6): 642-650. |
[4] | Chen Luyi, Huang Min, Wu Jiaqi, Luo Jun. Guided bone regeneration-assisted orthodontic treatment for closing the space of missing central incisors [J]. West China Journal of Stomatology, 2021, 39(4): 482-488. |
[5] | Jiang Xinquan. Advances in biomimetic modification of materials for oromaxillofacial bone regeneration and dental implant [J]. West China Journal of Stomatology, 2021, 39(2): 123-128. |
[6] | Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration [J]. West China Journal of Stomatology, 2020, 38(5): 571-575. |
[7] | Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells [J]. West China Journal of Stomatology, 2020, 38(3): 324-329. |
[8] | Zhao Dan,Li Yueheng,Yang Zhengyan,Cai Ting,Wu Xiaoyan,Xia Yu,Zhou Zhi. Effect of the local application of stem cells on repairing facial nerve defects: a systematic review [J]. West China Journal of Stomatology, 2020, 38(1): 59-68. |
[9] | Tiantian Yu,Jin Liu,Junjing Yin,Xiangna Xu,Shengjie Yan,Jing Lan. Effects of concentrated growth factors on relieving postoperative reaction of guided bone regeneration in the esthetic zone [J]. West China Journal of Stomatology, 2019, 37(4): 398-402. |
[10] | Yunjie Li,Binhong Teng,Yanhong Zhao,Qiang Yang,Lianyong Wang,Ying Huang. Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(3): 253-259. |
[11] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[12] | Yunjie Li,Yanhong Zhao,Qiang Yang. Development of cartilage extracellular matrix in cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(2): 220-223. |
[13] | Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report [J]. West China Journal of Stomatology, 2019, 37(1): 92-96. |
[14] | Feng Liao, Shibo Liu, Yao Liu, Hanghang Liu, Jian Hu, Xian Liu. Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariec-tomized rats [J]. West China Journal of Stomatology, 2018, 36(4): 367-371. |
[15] | Xinxin Ding, Yanmin Zhou, Xing-chen Xiang, Lin Meng, Qin Qin, Shan Ye. Research progress on chitosan composite scaffolds in bone tissue engineering [J]. West China Journal of Stomatology, 2018, 36(4): 441-446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||