West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (2): 123-128.doi: 10.7518/hxkq.2021.02.001
Received:
2020-10-09
Revised:
2020-12-18
Online:
2021-04-01
Published:
2021-04-09
Contact:
Jiang Xinquan
E-mail:xinquanjiang@aliyun.com
Supported by:
CLC Number:
Jiang Xinquan. Advances in biomimetic modification of materials for oromaxillofacial bone regeneration and dental implant[J]. West China Journal of Stomatology, 2021, 39(2): 123-128.
Add to citation manager EndNote|Ris|BibTeX
1 | 邱蔚六. 口腔颌面部缺损修复重建的现状和展望[J]. 中国修复重建外科杂志, 2005, 19(10): 769-772. |
Qiu WL. Current situation and prospect of reconstruction of oral and maxillofacial defects[J]. Chin J Repar Reconstr Surg, 2005, 19(10): 769-772. | |
2 | Wang YY, Naleway SE, Wang B. Biological and bioinspired materials: structure leading to functional and mechanical performance[J]. Bioact Mater, 2020, 5(4): 745-757. |
3 | Armiento AR, Hatt LP, Sanchez Rosenberg G, et al. Functional biomaterials for bone regeneration: a lesson in complex biology[J]. Adv Func Mater, 2020, 30(44): 1909874. |
4 | Du YY, Guo JL, Wang JL, et al. Hierarchically designed bone scaffolds: from internal cues to external stimuli[J]. Biomaterials, 2019, 218: 119334. |
5 | Wan CY, Chen BQ. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites[J]. Nanoscale, 2011, 3(2): 693-700. |
6 | Khang W, Feldman S, Hawley CE, et al. A multi-center study comparing dual acid-etched and machined-surfaced implants in various bone qualities[J]. J Periodontol, 2001, 72(10): 1384-1390. |
7 | Zhang WJ, Wang GC, Liu Y, et al. The synergistic effect of hierarchical Micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials, 2013, 34(13): 3184-3195. |
8 | Liu FW, Li YF, Liang JF, et al. Effects of Micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep[J]. Clin Implant Dent Relat Res, 2019, 21(2): 377-385. |
9 | Wu S, Liu X, Yeung KW, et al. Biomimetic porous scaffolds for bone tissue engineering[J]. Mater Sci Eng Rep, 2014, 80: 1-36. |
10 | Palmer LC, Newcomb CJ, Kaltz SR, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel[J]. Chem Rev, 2008, 108(11): 4754-4783. |
11 | O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23(4): 879-890. |
12 | Lin WC, Chuang CC, Yao C, et al. Effect of cobalt precursors on cobalt-hydroxyapatite used in bone regeneration and MRI[J]. J Dent Res, 2020, 99(3): 277-284. |
13 | Qiao YQ, Zhang WJ, Tian P, et al. Stimulation of bone growth following zinc incorporation into biomaterials[J]. Biomaterials, 2014, 35(25): 6882-6897. |
14 | Zhang WJ, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of HIF-1α[J]. Adv Healthc Mater, 2016, 5(11): 1299-1309. |
15 | Bunpetch V, Zhang XA, Li T, et al. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect[J]. Biomaterials, 2019, 192: 323-333. |
16 | Kong YY, Hu XL, Zhong YQ, et al. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling[J]. Stem Cell Res Ther, 2019, 10(1): 378. |
17 | Bakhit A, Kawashima N, Hashimoto K, et al. Strontium ranelate promotes odonto-/osteogenic differentiation/mi-neralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo[J]. Sci Rep, 2018, 8(1): 9224. |
18 | Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation[J]. Acta Biomater, 2014, 10(6): 2834-2842. |
19 | Zhang YF, Xu JK, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016, 22(10): 1160-1169. |
20 | Lin SH, Yang GZ, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209. |
21 | Wang H, Zeng X, Pang L, et al. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nano-sheets with 3D printed bioactive borosilicate glass scaffolds[J]. Chem Eng J, 2020, 396: 125081. |
22 | Bari A, Bloise N, Fiorilli S, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration[J]. Acta Biomater, 2017, 55: 493-504. |
23 | Kargozar S, Lotfibakhshaiesh N, Ai J, et al. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities[J]. Acta Biomater, 2017, 58: 502-514. |
24 | Zhang WJ, Cao HL, Zhang XC, et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016, 8(9): 5291-5301. |
25 | Tang YM, Lin SH, Yin S, et al. In situ gas foaming based on magnesium particle degradation: a novel approach to fabricate injectable macroporous hydrogels[J]. Biomaterials, 2020, 232: 119727. |
26 | Wu CT, Chen ZT, Wu QJ, et al. Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration[J]. Biomaterials, 2015, 71: 35-47. |
27 | Sun JL, Jiao K, Niu LN, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration[J]. Biomaterials, 2017, 113: 203-216. |
28 | Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Mater Today, 2016, 19(6): 304-321. |
29 | Liu JZ, Huang QF, Wang XD, et al. Early loading of splinted implants in posterior mandible: three-year results of a prospective multicenter study[J]. Clin Oral Implants Res, 2019, 30(10): 1049-1058. |
30 | Zhou JF, Huang QF, Wang XD, et al. Early loading of splinted implants in the posterior mandible: a prospective multicentre case series[J]. J Clin Periodontol, 2016, 43(3): 298-304. |
31 | Yang J, Yamato M, Kohno C, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds[J]. Biomaterials, 2005, 26(33): 6415-6422. |
32 | Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7): 904-914. |
33 | Lu YZ, Zhang WJ, Wang J, et al. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application[J]. Int J Oral Sci, 2019, 11(2): 90-102. |
34 | Matsuda N, Shimizu T, Yamato M, et al. Tissue engineering based on cell sheet technology[J]. Adv Mater, 2007, 19(20): 3089-3099. |
35 | Kawecki F, Clafshenkel WP, Fortin M, et al. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies[J]. Adv Healthc Mater, 2018, 7(6): e1700919. |
36 | Yang B, Chen G, Li J, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold[J]. Biomaterials, 2012, 33(8): 2449-2461. |
37 | Tsumanuma Y, Iwata T, Washio K, et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model[J]. Biomaterials, 2011, 32(25): 5819-5825. |
38 | Vaquette C, Saifzadeh S, Farag A, et al. Periodontal tissue engineering with a multiphasic construct and cell sheets[J]. J Dent Res, 2019, 98(6): 673-681. |
39 | Zhou YF, Chen FL, Ho ST, et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts[J]. Biomaterials, 2007, 28(5): 814-824. |
40 | Shan XL, Hu DS. Bone engineering by cell sheet technology to repair mandibular defects[J]. Exp Ther Med, 2017, 14(5): 5007-5011. |
41 | Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10(455): eaaf3227. |
42 | Ito A, Hibino E, Kobayashi C, et al. Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force[J]. Tissue Eng, 2005, 11(3/4): 489-496. |
43 | Ito A, Ino K, Hayashida M, et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force[J]. Tissue Eng, 2005, 11(9/10): 1553-1561. |
44 | Ito A, Takizawa Y, Honda H, et al. Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells[J]. Tissue Eng, 2004, 10(5/6): 833-840. |
45 | Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43): 1703795. |
[1] | Zhou Jian, Su Yingying, Wang Song-ling. Progress and perspectives on cell-free regenerative endodontic therapy [J]. West China Journal of Stomatology, 2022, 40(1): 1-6. |
[2] | Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration [J]. West China Journal of Stomatology, 2021, 39(6): 624-632. |
[3] | Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells [J]. West China Journal of Stomatology, 2020, 38(3): 324-329. |
[4] | Zhao Dan,Li Yueheng,Yang Zhengyan,Cai Ting,Wu Xiaoyan,Xia Yu,Zhou Zhi. Effect of the local application of stem cells on repairing facial nerve defects: a systematic review [J]. West China Journal of Stomatology, 2020, 38(1): 59-68. |
[5] | Yunjie Li,Binhong Teng,Yanhong Zhao,Qiang Yang,Lianyong Wang,Ying Huang. Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(3): 253-259. |
[6] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[7] | Yunjie Li,Yanhong Zhao,Qiang Yang. Development of cartilage extracellular matrix in cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(2): 220-223. |
[8] | Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report [J]. West China Journal of Stomatology, 2019, 37(1): 92-96. |
[9] | Xinxin Ding, Yanmin Zhou, Xing-chen Xiang, Lin Meng, Qin Qin, Shan Ye. Research progress on chitosan composite scaffolds in bone tissue engineering [J]. West China Journal of Stomatology, 2018, 36(4): 441-446. |
[10] | Binhong Teng, Yanhong Zhao, Lianyong Wang, Qiang Yang, Hongfa Li, Yunjie Li. Preparation and characterization of oriented scaffolds derived from cartilage extracellular matrix and silk fibroin [J]. West China Journal of Stomatology, 2018, 36(1): 17-22. |
[11] | Kun Li, Yanhong Zhao, Chen Xu, Lianyong Wang, Qiang Yang, Hongfa Li, Binhong Teng. Development and characterization of oriented scaffolds derived from cartilage extracellular matrix [J]. West China Journal of Stomatology, 2017, 35(1): 51-56. |
[12] | Cai Linyi, Kong Xiangli, Xie Jing. Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extracellular matrix [J]. West China Journal of Stomatology, 2016, 34(3): 248-254. |
[13] | Xi Weihong, Wang Zhen, Zhu Hongshui, Li Xiaofeng, Xiong Yuanfei. Synthesis and characteristics of integrated bionic mandibular condylar scaffold [J]. West China Journal of Stomatology, 2016, 34(1): 68-72. |
[14] | Shi Shiyu, Xie Jiamin. Study progress of dental pulp stem cells in tissue engineering [J]. West China Journal of Stomatology, 2015, 33(6): 656-659. |
[15] | Zhang Xiaoming, Li Wenbo.. Research process of the preparation of electrostatic spinning of poly-glycerol sebacate and the application in tissue engineering [J]. West China Journal of Stomatology, 2015, 33(5): 539-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||