West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (2): 129-135.doi: 10.7518/hxkq.2021.02.002
Previous Articles Next Articles
Niu Lina(), Jiao Kai, Fang Ming, Chen Jihua
Received:
2020-11-04
Revised:
2020-12-14
Online:
2021-04-01
Published:
2021-04-09
Contact:
Niu Lina
E-mail:niulina831013@126.com
Supported by:
CLC Number:
Niu Lina, Jiao Kai, Fang Ming, Chen Jihua. Application of biomimetic restoration in oral-maxillofacial hard tissue repair[J]. West China Journal of Stomatology, 2021, 39(2): 129-135.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
Remineralization of enamel
仿生策略 | 文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
模拟NCP的 作用 | Chen等[ | PAMAM-磷酸 | 体外+大鼠口内 | 可诱导脱矿釉质形成新生HAP |
Chen等[ | PAMAM-羧基 | 体外 | 可模拟组装出类似釉原蛋白的结构 | |
Fan等[ | PAMAM-氨基,PAMAM-羧基, PAMAM-羟基 | 体外 | PAMAM可促进深层脱矿釉质再矿化 | |
Kind等[ | P11-4 | 体外 | 可促进釉质病变深层的再矿化,其作用方式与釉质自然形成过程相似 | |
Alkilzy等[ | P11-4,氟化钠 | 体外 | P11-4对釉质的再矿化效果优于氟化钠 | |
Welk等[ | P11-4 | 临床试验 | 可修复釉质白垩色斑 | |
稳定并输送 矿物或矿物 前体 | Gargouri等[ | CPP-ACP | 体外 | 添加CPP-ACP的口香糖可促进脱矿釉质再矿化 |
Ma等[ | CPP-ACP | 体外+临床试验 | 可促进釉质白垩色斑的恢复,有助于诱导脱矿釉质再矿化并恢复其力学性能 | |
Shao等[ | 钙磷离子团簇 | 体外 | 修复后的釉质与天然釉质具有相同的层次结构和力学性能 |
Tab 2
Remineralization of dentin
仿生策略 | 文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
稳定并输送 矿物或矿物 前体 | Niu等[ | ACP | 体外 | 混有ACP的粘接剂具有再矿化作用且粘接性能无明显改变 |
Luo等[ | 介孔硅加载ACP | 体外 | 可诱导脱矿牙本质再矿化,解决ACP难以输送的问题 | |
Yu等[ | 介孔硅加载 纳米HAP | 体外 | 可有效地阻断牙本质小管,抗酸稳定性好,且不影响牙本质与自腐蚀粘接剂系统之间的即时粘结强度 | |
模拟NCP的 作用 | Xie等[ | PAMAM | 体外 | 可促进脱矿牙本质再矿化,并提高其显微硬度 |
Bacino等[ | 聚天冬氨酸 | 体外 | 可诱导矿化前体,修复脱矿牙本质的结构和力学性能 | |
Gulseren等[ | 牙本质磷蛋白模拟肽 | 体外 | 可诱导牙本质再矿化 |
Tab 3
Biomimetic restoration of bone defect
仿生策略 | 参考文献 | 修复材料 | 研究环境 | 研究结果 |
---|---|---|---|---|
结构仿生 | Sun等[ | 硅化胶原支架 | 体外+大鼠骨缺损模型 | 硅化支架可通过单核细胞免疫调节促进原位骨再生和血管生成 |
Niu等[ | 杂化胶原支架 | 体外 | 该修复材料具有良好的机械性能 | |
Yao等[ | 磷酸钙聚合物诱导的液体前体 | 体外+小鼠骨质疏松模型 | 可对形状不规则的骨缺损区域进行修复 | |
Song等[ | 聚丙烯酸交联胶原 | 体外+小鼠颅骨缺损模型 | 可诱导在体内自矿化,解决聚电解质在体内引入困难的问题 | |
功能仿生 | Zhang等[ | 双壳微小RNA纳米微球+纳米纤维聚合物支架 | 体外+骨质疏松小鼠临界骨缺损模型 | 解决了在组织工程中实现基于无细胞支架的微小RNA治疗的再生医学的关键挑战 |
Liu等[ | 可注射生物活性因子纳米微球 | 体外+小鼠牙周炎模型 | 可通过原位免疫调节促进骨修复 | |
Zhang等[ | 磁控生长因子负载支架 | 体外 | 提高生长因子的传递效率 | |
Liu等[ | 加载基质细胞来源因子的无细胞组织工程骨支架 | 体外+小鼠颅骨缺损模型 | 可增强间充质干细胞的归巢与迁移,加速血管化,促进骨形成 | |
Yu等[ | 磷酸三钙加载骨形成蛋白 | 体外+犬下颌骨缺损模型 | 促进血管化及骨形成 |
1 | Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions[J]. J Orthop Surg Res, 2014, 9(1): 18. |
2 | Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015, 14(1): 23-36. |
3 | 崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007. |
Cui FZ. Biomineralization[M]. Beijing: Tsinghua University Press, 2007. | |
4 | Sharma V, Srinivasan A, Nikolajeff F, et al. Biomineralization process in hard tissues: the interaction complexity within protein and inorganic counterparts[J]. Acta Biomater, 2021, 120: 20-37. |
5 | Zhang J, Wang J, Ma CW, et al. Hydroxyapatite formation coexists with amyloid-like self-assembly of human amelogenin[J]. Int J Mol Sci, 2020, 21(8): E2946. |
6 | Chen L, Yuan H, Tang B, et al. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro[J]. Caries Res, 2015, 49(3): 282-290. |
7 | Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions[J]. Microsc Res Tech, 2019, 82(7): 1065-1072. |
8 | Alkilzy M, Tarabaih A, Santamaria RM, et al. Self-assembling peptide P11-4 and fluoride for regenerating ena-mel[J]. J Dent Res, 2018, 97(2): 148-154. |
9 | Welk A, Ratzmann A, Reich M, et al. Effect of self-assembling peptide P11-4 on orthodontic treatment-induced carious lesions[J]. Sci Rep, 2020, 10(1): 6819. |
10 | Kind L, Stevanovic S, Wuttig S, et al. Biomimetic remineralization of carious lesions by self-assembling peptide[J]. J Dent Res, 2017, 96(7): 790-797. |
11 | Chen M, Yang JJ, Li JY, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin[J]. Acta Biomater, 2014, 10(10): 4437-4446. |
12 | Fan ML, Zhang M, Xu HK, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro[J]. Dent Mater, 2020, 36(2): 210-220. |
13 | Philip N. State of the art enamel remineralization systems: the next frontier in caries management[J]. Caries Res, 2019, 53(3): 284-295. |
14 | Arifa MK, Ephraim R, Rajamani T. Recent advances in dental hard tissue remineralization: a review of literature[J]. Int J Clin Pediatr Dent, 2019, 12(2): 139-144. |
15 | Ma XL, Lin XD, Zhong TF, et al. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and Meta-analysis[J]. BMC Oral Health, 2019, 19(1): 295. |
16 | Gargouri W, Zmantar T, Kammoun R, et al. Coupling xylitol with remineralizing agents improves tooth protection against demineralization but reduces antibiofilm effect[J]. Microb Pathog, 2018, 123: 177-182. |
17 | Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial g-rowth[J]. Sci Adv, 2019, 5(8): eaaw9569. |
18 | Niu LN, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014, 30(1): 77-96. |
19 | Gulseren G, Tansik G, Garifullin R, et al. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization[J]. Macromol Biosci, 2019, 19(1): e1800080. |
20 | Liu Y, Zhang L, Niu LN, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles[J]. J Dent, 2018, 72: 53-63. |
21 | Luo XJ, Yang HY, Niu LN, et al. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica[J]. Acta Biomater, 2016, 31: 378-387. |
22 | Yu J, Yang HY, Li K, et al. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study[J]. J Dent, 2016, 50: 21-29. |
23 | Xie FF, Wei XL, Li QR, et al. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion[J]. Dent Mater J, 2016, 35(1): 104-111. |
24 | Bacino M, Girn V, Nurrohman H, et al. Integrating the PILP-mineralization process into a restorative dental treat-ment[J]. Dent Mater, 2019, 35(1): 53-63. |
25 | Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020, 7(1): 54. |
26 | Hu Y, Zhu YJ, Zhou X, et al. Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair[J]. J Mater Chem B, 2016, 4(7): 1235-1246. |
27 | Sun JL, Jiao K, Song Q, et al. Intrafibrillar silicified collagen scaffold promotes in situ bone regeneration by activating the monocyte p38 signaling pathway[J]. Acta Biomater, 2018, 67: 354-365. |
28 | Sun JL, Jiao K, Niu LN, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration[J]. Biomaterials, 2017, 113: 203-216. |
29 | Niu LN, Jiao K, Ryou H, et al. Multiphase intrafibrillar mineralization of collagen[J]. Angew Chem Int Ed Engl, 2013, 52(22): 5762-5766. |
30 | Yao SS, Lin XF, Xu YF, et al. Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor[J]. Adv Sci (Weinh), 2019, 6(19): 1900683. |
31 | Song Q, Jiao K, Tonggu L, et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization[J]. Sci Adv, 2019, 5(3): eaav9075. |
32 | Zhang XJ, Li Y, Chen YE, et al. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate cri-tical-sized bone defects[J]. Nat Commun, 2016, 7: 10376. |
33 | Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799. |
34 | Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43): 1703795. |
35 | Lin SH, Yang GZ, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209. |
36 | Liu YS, Ou MG, Liu H, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration[J]. Biomaterials, 2014, 35(15): 4489-4498. |
37 | Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35): 9415-9424. |
38 | Yu T, Liu Q, Jiang T, et al. Channeled β-TCP scaffolds promoted vascularization and bone augmentation in mandible of Beagle dogs[J]. Adv Funct Mater, 2016, 26: 6719-6727. |
39 | Nair MA, Shaik KV, Kokkiligadda A, et al. Tissue-engineered maxillofacial skeletal defect reconstruction by 3D printed beta-tricalcium phosphate scaffold tethered with growth factors and fibrin glue implanted autologous bone marrow-derived mesenchymal stem cells[J]. J Med Life, 2020, 13(3): 418-425. |
[1] | Enimubai Daerya, Zhang Di, Awuti Gulinuer. Comparison of the osteogenic effects of demineralized dentin matrix and acellular dentin matrix [J]. West China Journal of Stomatology, 2024, 42(1): 28-36. |
[2] | Wang Zi, Xue Ming. Formation of dentinal microcracks after root canal preparation with four kinds of mechanical nickel-titanium files [J]. West China Journal of Stomatology, 2024, 42(1): 75-81. |
[3] | Liu Yuting, Yuan Quan.. Clinical decision and related factors influencing implant direction in the esthetic area [J]. West China Journal of Stomatology, 2023, 41(5): 512-520. |
[4] | Yu Yuanyuan, Zhong Shuaiqi, Sun Weilian, Lei Lihong.. Application of digital technology and platelet-rich fibrin technology in a novel regenerative treatment for posterior lingual furcation defect: a 6-year follow-up case report [J]. West China Journal of Stomatology, 2023, 41(5): 582-591. |
[5] | Luo Xiao, Chen Yu, Shi Bing, Zheng Qian, Li Chenghao.. Three-dimensional reconstruction reveals the correlation between the extent of alveolar clefts and secondary nasal deformity in adults [J]. West China Journal of Stomatology, 2023, 41(4): 421-425. |
[6] | Jing Bingshuai, Shi Bing, Zheng Qian, Li Chenghao.. Effectiveness of iliac cancellous bone grafting in alveolar cleft repair and analysis of factors affecting it [J]. West China Journal of Stomatology, 2023, 41(3): 284-289. |
[7] | Ren Bihui, Guo Shuigen, Xu Yehao, Dai Jieting, Wei Hongwu.. Clinical efficacy of simple taper retentive implants in immediate posterior dental implantation for 5-7 years [J]. West China Journal of Stomatology, 2023, 41(3): 341-349. |
[8] | Li Chenghao, Shi Bing.. Two-stage alveolar bone grafting for nasal floor reconstruction in adult cleft patients [J]. West China Journal of Stomatology, 2023, 41(2): 129-133. |
[9] | Wu Hao, Li Ying, Wang Yuzhuo, Yu Jize, Bao Xingfu, Hu Min. Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism [J]. West China Journal of Stomatology, 2023, 41(2): 140-148. |
[10] | Wang Li, Wu Fei, Xiao Mo, Chen Yu-xin, Wu Ligeng. Prediction of pulp exposure risk of carious pulpitis based on deep learning [J]. West China Journal of Stomatology, 2023, 41(2): 218-224. |
[11] | Zhang Qihang, Gong Jiaming, Yu Jiaying, Zhao Ruimin, Gou Ping, Yu Zhanhai. Clinical efficacy of extra-short implant (4 mm) placed in posterior areas: a Meta-analysis [J]. West China Journal of Stomatology, 2023, 41(1): 80-87. |
[12] | Meng Yuchen, Huang Fan, Wang Silin, Huang Xin, Lu Yi, Pei Dandan. Bonding properties of mild universal adhesives to dentin pretreated with hydroxyapatite-based desensitizing agents [J]. West China Journal of Stomatology, 2022, 40(6): 668-675. |
[13] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[14] | Gong Jiaming, Zhang Qihang, Gou Ping, Wang Hui, Yu Jiaying, Yu Zhanhai. Meta-analysis of application of autogenous dentin for alveolar ridge augmentation [J]. West China Journal of Stomatology, 2022, 40(5): 566-575. |
[15] | Yuan Wei, Hou Yan, Song Peng, Zhang Xiaohuan, Huang Wei. Comparative study on the effect of maxillary expansion on the displacement of maxillary alveolar bone before and after alveolar bone graft: a three-dimensional finite element analysis [J]. West China Journal of Stomatology, 2022, 40(4): 451-456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||