1 |
Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: a global public health challenge[J]. Lancet, 2019, 394(10194): 249-260.
|
2 |
王琳璇, 王琦, 赵云, 等. TNF-α对牙周膜成纤维细胞ephrinB2/EphB4表达量的影响[J]. 口腔医学研究, 2020, 36(8): 741-744.
|
|
Wang LX, Wang Q, Zhao Y, et al. Effect of TNF-α on expression of ephrinB2/EphB4 in periodontal fibroblasts[J]. J Oral Sci Res, 2020, 36(8): 741-744.
|
3 |
Xu Y, Zhao S, Weng Z, et al. Jelly-inspired injectable guided tissue regeneration strategy with shape auto-matched and dual-light-defined antibacterial/osteogenic pattern Switch properties[J]. ACS Appl Mater Interfaces, 2020, 12(49): 54497-54506.
|
4 |
Liu X, He X, Jin D, et al. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration[J]. Acta Biomater, 2020, 108: 207-222.
|
5 |
Zhang L, Dong Y, Zhang N, et al. Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110618.
|
6 |
Barbeck M, Kühnel L, Witte F, et al. Degradation, bone regeneration and tissue response of an innovative volu-me stable magnesium-supported GBR/GTR barrier mem-brane[J]. Int J Mol Sci, 2020, 21(9): 3098.
|
7 |
Abe GL, Sasaki JI, Katata C, et al. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application[J]. Dent Mater, 2020, 36(5): 626-634.
|
8 |
Steigmann L, Jung O, Kieferle W, et al. Biocompatibility and immune response of a newly developed volume-stable magnesium-based barrier membrane in combination with a PVD coating for guided bone regeneration (GBR)[J]. Biomedicines, 2020, 8(12): 636.
|
9 |
谢苗苗, 赵保东, 王维英, 等. 口腔修复膜材料在牙种植中引导骨再生的效应[J]. 中国组织工程研究与临床康复, 2010, 14(16): 2911-2915.
|
|
Xie MM, Zhao BD, Wang WY, et al. Effects of oral biofilm on guided bone regeneration in dental implant[J]. Chin J Tis Eng Res, 2010, 14(16): 2911-2915.
|
10 |
Zhou X, Cheng X, Xing D, et al. Ca ions chelation, collagen Ⅰ incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation[J]. Mater Des, 2021, 198: 109300.
|
11 |
Sartika D, Wang CH, Wang DH, et al. Human adipose-derived mesenchymal stem cells-incorporated silk fibroin as a potential bio-scaffold in guiding bone regeneration[J]. Polymers (Basel), 2020, 12(4): 853.
|
12 |
Choi E, Bae S, Kim DY, et al. Characterization and intracellular mechanism of electrospun poly(ε-caprolactone) (PCL) fibers incorporated with bone-dECM powder as a potential membrane for guided bone regeneration[J]. J Ind Eng Chem, 2021, 94: 282-291.
|
13 |
Nemati S, Kim SJ, Shin YM, et al. Current progress in application of polymeric nanofibers to tissue engineering[J]. Nano Converg, 2019, 6(1): 36.
|
14 |
George A, Sanjay MR, Srisuk R, et al. A comprehensive review on chemical properties and applications of biopolymers and their composites[J]. Int J Biol Macromol, 2020, 154: 329-338.
|
15 |
Wang Z, Ma K, Jiang X, et al. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate) /octacalcium phos- phate nanofibrous membranes for effective guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 112: 110763.
|
16 |
Sudo H, Kodama HA, Amagai Y, et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria[J]. J Cell Biol, 1983, 96(1): 191-198.
|
17 |
Wang B, Ma C, Xiong ZC, et al. Synthesis of novel copolymer: poly(p-dioxanone-co-l-phenylalanine)[J]. Chin Chem Lett, 2013, 24(5): 392-396.
|
18 |
Krishnan V, Dhurjati R, Vogler EA, et al. Osteogenesis in vitro: from pre-osteoblasts to osteocytes: a contribution from the Osteobiology Research Group, The Pennsylvania State University[J]. In Vitro Cell Dev Biol Anim, 2010, 46(1): 28-35.
|
19 |
Cannella V, Altomare R, Chiaramonte G, et al. Cytotoxi-city evaluation of endodontic pins on L929 cell line[J]. Biomed Res Int, 2019, 2019: 3469525.
|
20 |
Wang B, Wen A, Feng C, et al. The in vivo anti-fibrotic function of calcium sensitive receptor (CaSR) modulating poly(p-dioxanone-co-l-phenylalanine) prodrug[J]. Acta B-iomater, 2018, 73: 180-189.
|
21 |
Qasim SB, Najeeb S, Delaine-Smith RM, et al. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration[J]. Dent Mater, 2017, 33(1): 71-83.
|
22 |
Wang C, Chen Y, Xu Z, et al. Fabrication and characterization of novel cRGD modified graphene quantum dots for chemo-photothermal combination therapy[J]. Sens Actuators B Chem, 2020, 309: 127732.
|
23 |
Castro VO, Fredel MC, Aragones A, et al. Electrospun fibrous membranes of poly (lactic-co-glycolic acid) with β-tricalcium phosphate for guided bone regeneration application[J]. Poly Test, 2020, 86: 106489.
|
24 |
Watcharajittanont N, Tabrizian M, Putson C, et al. Osseointegrated membranes based on electro-spun TiO2/hydroxyapatite/polyurethane for oral maxillofacial surgery[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110479.
|
25 |
Wang L, Zhang Z, Chen H, et al. Preparation and characterization of biodegradable thermoplastic elastomers (PLCA/PLGA blends)[J]. J Polym Res, 2010, 17(1): 77-82.
|
26 |
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine[J]. Nat Rev Mater, 2018, 3(7): 159-173.
|
27 |
Luo J, Zhu J, Wang L, et al. Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111622.
|
28 |
Choi CK, Xu YJ, Wang B, et al. Substrate coupling strength of integrin-binding ligands modulates adhesion, spreading, and differentiation of human mesenchymal stem cells[J]. Nano Lett, 2015, 15(10): 6592-6600.
|
29 |
Luo K, Gao X, Gao Y, et al. Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology[J]. Acta Biomater, 2019, 85: 106-116.
|
30 |
韩倞, 杨轶, 张弛, 等. 骨科植入物表面抗感染修饰及其骨整合性的研究进展[J]. 中国临床医学, 2017, 24(1): 134-140.
|
|
Han J, Yang Y, Zhang C, et al. Advances in surface mo-dification of orthopaedic implants for anti-infection and osseointegration[J]. Chin J Clin Med, 2017, 24(1): 134-140.
|