West China Journal of Stomatology ›› 2020, Vol. 38 ›› Issue (5): 571-575.doi: 10.7518/hxkq.2020.05.017
Previous Articles Next Articles
Jiang Yixuan(), Gong Ping, Zhang Liang()
Received:
2019-12-07
Revised:
2020-06-04
Online:
2020-10-01
Published:
2020-10-14
Contact:
Zhang Liang
E-mail:531935636@qq.com;liangzhang@scu.edu.cn
Supported by:
CLC Number:
Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration[J]. West China Journal of Stomatology, 2020, 38(5): 571-575.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Yang MH, Lim KT, Choung PH , et al. Application of ultrasound stimulation in bone tissue engineering[J]. Int J Stem Cells, 2010,3(2):74-79.
doi: 10.15283/ijsc.2010.3.2.74 URL pmid: 24855544 |
[2] |
Harrison A, Lin S, Pounder N , et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair[J]. Ultrasonics, 2016,70:45-52.
doi: 10.1016/j.ultras.2016.03.016 URL pmid: 27130989 |
[3] |
Bashardoust Tajali S, Houghton P, MacDermid JC, et al. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis[J]. Am J Phys Med Rehabil, 2012,91(4):349-367.
doi: 10.1097/PHM.0b013e31822419ba URL pmid: 21904188 |
[4] |
Wu SY, Xu XM, Sun JC , et al. Low-intensity pulsed ultrasound accelerates traumatic vertebral fracture healing by coupling proliferation of type H microvessels[J]. J Ultrasound Med, 2018,37(7):1733-1742.
doi: 10.1002/jum.14525 URL pmid: 29363151 |
[5] |
Zhu HX, Cai XZ, Lin T , et al. Low-intensity pulsed ultrasound enhances bone repair in a rabbit model of steroid-associated osteonecrosis[J]. Clin Orthop Relat Res, 2015,473(5):1830-1839.
doi: 10.1007/s11999-015-4154-8 URL pmid: 25736917 |
[6] |
Jung YJ, Kim R, Ham HJ , et al. Focused low-intensity pulsed ultrasound enhances bone regeneration in rat calvarial bone defect through enhancement of cell proliferation[J]. Ultrasound Med Biol, 2015,41(4):999-1007.
doi: 10.1016/j.ultrasmedbio.2014.11.008 URL pmid: 25701528 |
[7] |
Rubin C, Bolander M, Ryaby JP , et al. The use of low-intensity ultrasound to accelerate the healing of fractures[J]. J Bone Joint Surg Am, 2001,83(2):259-270.
doi: 10.2106/00004623-200102000-00015 URL pmid: 11216689 |
[8] |
Feng LF, Liu XH, Cao HJ , et al. A comparison of 1-and 3.2-MHz low-intensity pulsed ultrasound on osteogenesis on porous titanium alloy scaffolds: an in vitro and in vivo study[J]. J Ultrasound Med, 2019,38(1):191-202.
doi: 10.1002/jum.14683 URL pmid: 29781183 |
[9] |
Mishima H, Sugaya H, Yoshioka T , et al. The safety and efficacy of combined autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound in the treatment of osteonecrosis of the femoral head[J]. Eur J Orthop Surg Traumatol, 2016,26(3):293-298.
doi: 10.1007/s00590-016-1752-4 URL pmid: 26920362 |
[10] |
Zu HY, Yi XT, Zhao DW . Transcriptome sequencing analysis reveals the effect of combinative treatment with low-intensity pulsed ultrasound and magnesium ions on hFOB1. 19 human osteoblast cells[J]. Mol Med Rep, 2018,18(1):749-762.
doi: 10.3892/mmr.2018.9006 URL pmid: 29767241 |
[11] |
Wang YJ, Qiu Y, Li J , et al. Low-intensity pulsed ultrasound promotes alveolar bone regeneration in a periodontal injury model[J]. Ultrasonics, 2018,90:166-172.
doi: 10.1016/j.ultras.2018.06.015 URL pmid: 30049446 |
[12] |
Zhou XY, Xu XM, Wu SY , et al. Low-intensity pulsed ultrasound promotes spinal fusion and enhances migration and proliferation of MG63s through sonic hedgehog signaling pathway[J]. Bone, 2018,110:47-57.
doi: 10.1016/j.bone.2018.01.025 URL pmid: 29414599 |
[13] |
Matsumoto K, Shimo T, Kurio N , et al. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling[J]. J Cell Biochem, 2018,119(6):4352-4360.
doi: 10.1002/jcb.26418 URL pmid: 28981158 |
[14] |
Miyasaka M, Nakata H, Hao J , et al. Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse Calvaria-derived osteoblasts[J]. Tissue Eng Part A, 2015,21(23/24):2829-2839.
doi: 10.1089/ten.tea.2015.0234 URL |
[15] |
Bandow K, Nishikawa Y, Ohnishi T , et al. Low-intensity pulsed ultrasound (LIPUS) induces RANKL, MCP-1, and MIP-1beta expression in osteoblasts through the angiotensin Ⅱ type 1 receptor[J]. J Cell Physiol, 2007,211(2):392-398.
doi: 10.1002/jcp.20944 URL pmid: 17167786 |
[16] |
Manaka S, Tanabe N, Kariya T , et al. Low-intensity pulsed ultrasound-induced ATP increases bone formation via the P2X7 receptor in osteoblast-like MC3T3-E1 cells[J]. FEBS Lett, 2015,589(3):310-318.
doi: 10.1016/j.febslet.2014.12.013 URL pmid: 25542352 |
[17] |
Kaur H, Siraki AG, Uludağ H , et al. Role of reactive oxygen species during low-intensity pulsed ultrasound application in MC-3T3 E1 pre-osteoblast cell culture[J]. Ultrasound Med Biol, 2017,43(11):2699-2712.
doi: 10.1016/j.ultrasmedbio.2017.07.002 URL pmid: 28807447 |
[18] |
Tassinary JAF, Lunardelli A, Basso BS , et al. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake[J]. Ultrasonics, 2018,84:290-295.
doi: 10.1016/j.ultras.2017.11.011 URL pmid: 29182945 |
[19] |
Tabuchi Y, Sugahara Y, Ikegame M , et al. Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells[J]. Int J Mol Sci, 2013,14(11):22721-22740.
doi: 10.3390/ijms141122721 URL pmid: 24252911 |
[20] |
Suzuki N, Hanmoto T, Ikegame M , et al. 9. effects of low-intensity pulsed ultrasound (LIPUS) on osteoclasts and osteoblasts: analysis using an assay system with fish scale as a model of bone[J]. J Orthop Trauma, 2016,30(8):S4.
doi: 10.1097/01.bot.0000489981.32706.91 URL pmid: 27441769 |
[21] |
Hanmoto T, Tabuchi Y, Ikegame M , et al. Effects of low-intensity pulsed ultrasound on osteoclasts: analysis with goldfish scales as a model of bone[J]. Biomed Res, 2017,38(1):71-77.
doi: 10.2220/biomedres.38.71 URL pmid: 28239034 |
[22] |
Meng JH, Hong JQ, Zhao CC , et al. Low-intensity pulsed ultrasound inhibits RANKL-induced osteoclast formation via modulating ERK-c-Fos-NFATc1 signaling cascades[J]. Am J Transl Res, 2018,10(9):2901-2910.
URL pmid: 30323876 |
[23] |
Verma S, Rajaratnam JH, Denton J , et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis[J]. J Clin Pathol, 2002,55(9):693-698.
doi: 10.1136/jcp.55.9.693 URL pmid: 12195001 |
[24] |
Kusuyama J, Bandow K, Shamoto M , et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway[J]. J Biol Chem, 2014,289(15):10330-10344.
doi: 10.1074/jbc.M113.546382 URL pmid: 24550383 |
[25] |
Costa V, Carina V, Fontana S , et al. Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation[J]. J Cell Physiol, 2018,233(2):1558-1573.
doi: 10.1002/jcp.26058 URL pmid: 28621452 |
[26] |
He RX, Zhou WC, Zhang Y , et al. Combination of low-intensity pulsed ultrasound and C3H10T1/2 cells promotes bone-defect healing[J]. Int Orthop, 2015,39(11):2181-2189.
doi: 10.1007/s00264-015-2898-0 URL pmid: 26169839 |
[27] |
Sena K, Angle SR, Kanaji A , et al. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells[J]. Ultrasonics, 2011,51(5):639-644.
doi: 10.1016/j.ultras.2011.01.007 URL |
[28] | Xiao WX, Xu Q, Zhu ZM , et al. Different performances of CXCR4, integrin-1β and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation[J]. Biomedizinische Tech, 2017,62(1):89-95. |
[29] |
Maes C, Goossens S, Bartunkova S , et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones[J]. EMBO J, 2010,29(2):424-441.
doi: 10.1038/emboj.2009.361 URL pmid: 20010698 |
[30] |
Maes C, Kobayashi T, Selig MK , et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels[J]. Dev Cell, 2010,19(2):329-344.
doi: 10.1016/j.devcel.2010.07.010 URL pmid: 20708594 |
[31] |
Katano M, Naruse K, Uchida K , et al. Low intensity pulsed ultrasound accelerates delayed healing process by reducing the time required for the completion of endochondral ossification in the aged mouse femur fracture model[J]. Exp Anim, 2011,60(4):385-395.
doi: 10.1538/expanim.60.385 URL pmid: 21791878 |
[32] |
Cheung WH, Chow SK, Sun MH , et al. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing[J]. Ultrasound Med Biol, 2011,37(2):231-238.
doi: 10.1016/j.ultrasmedbio.2010.11.016 URL |
[33] |
Martinez de Albornoz P, Khanna A, Longo UG , et al. The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing[J]. Br Med Bull, 2011,100:39-57.
doi: 10.1093/bmb/ldr006 URL pmid: 21429948 |
[34] |
Korstjens CM, Rutten S, Nolte PA , et al. Low-intensity pulsed ultrasound increases blood vessel size during fracture healing in patients with a delayed-union of the osteotomized fibula[J]. Histol Histopathol, 2018,33(7):737-746.
doi: 10.14670/HH-11-972 URL pmid: 29436706 |
[35] |
Hanawa K, Ito K, Aizawa K , et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia[J]. PLoS One, 2014,9(8):e104863.
doi: 10.1371/journal.pone.0104863 URL pmid: 25111309 |
[36] |
Shindo T, Ito K, Ogata T , et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction[J]. Arterioscler Thromb Vasc Biol, 2016,36(6):1220-1229.
doi: 10.1161/ATVBAHA.115.306477 URL pmid: 27079882 |
[37] |
Heffner MA, Anderson MJ, Yeh GC , et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation[J]. J Musculoskelet Neuronal Interact, 2014,14(1):1-9.
URL pmid: 24583535 |
[38] | 杨博, 吴庆庆, 张亮 , 等. 低频脉冲超声对失下牙槽神经后下颌骨病理改变修复的影响[J]. 中国医学科学院学报, 2017,39(2):215-224. |
Yang B, Wu QQ, Zhang L , et al. Effect of low-intensity pulsed ultrasound on the mandibular remodeling following inferior alveolar nerve transection[J]. Acta Acad Med Sinic, 2017,39(2):215-224. | |
[39] |
Jiang WL, Wang YX, Tang J , et al. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat[J]. Sci Rep, 2016,6:22773.
doi: 10.1038/srep22773 URL pmid: 27102358 |
[40] |
Lv Y, Nan PP, Chen GB , et al. In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells[J]. Biotechnol Lett, 2015,37(12):2497-2506.
doi: 10.1007/s10529-015-1939-5 URL pmid: 26303432 |
[41] |
Xia B, Chen GB, Zou Y , et al. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery[J]. J Tissue Eng Regen Med, 2019,13(4):625-636.
doi: 10.1002/term.2823 URL pmid: 30770650 |
[42] |
Zhang H, Lin X, Wan H , et al. Effect of low-intensity pulsed ultrasound on the expression of neurotrophin-3 and brain-derived neurotrophic factor in cultured Schwann cells[J]. Microsurgery, 2009,29(6):479-485.
doi: 10.1002/micr.20644 URL pmid: 19308950 |
[43] |
Zhou XY, Xu XM, Wu SY , et al. Low-intensity pulsed ultrasound-induced spinal fusion is coupled with enhanced calcitonin gene-related peptide expression in rat model[J]. Ultrasound Med Biol, 2017,43(7):1486-1493.
doi: 10.1016/j.ultrasmedbio.2017.03.012 URL pmid: 28457632 |
[44] |
Lam WL, Guo X, Leung KS , et al. The role of the sensory nerve response in ultrasound accelerated fracture repair[J]. J Bone Joint Surg Br, 2012,94(10):1433-1438.
doi: 10.1302/0301-620X.94B10.29139 URL pmid: 23015574 |
[1] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[2] | Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration [J]. West China Journal of Stomatology, 2021, 39(6): 624-632. |
[3] | Wang Yanan, Wu Xuan, Jia Tingting, Feng Yao, Liu Shiyue, Xu Xin, Zhang Dongjiao. Effect of type 2 diabetes mellitus on mandibular bone regeneration and the expression of T helper cell 17/regulat-ory T cell-related factors in mice [J]. West China Journal of Stomatology, 2021, 39(6): 642-650. |
[4] | Chen Luyi, Huang Min, Wu Jiaqi, Luo Jun. Guided bone regeneration-assisted orthodontic treatment for closing the space of missing central incisors [J]. West China Journal of Stomatology, 2021, 39(4): 482-488. |
[5] | Wang Yanying, Gong Ping, Zhang Jian. Effects of different implant surface properties on the biological behavior of Schwann cells [J]. West China Journal of Stomatology, 2021, 39(3): 279-285. |
[6] | Yanying Wang,Ping Gong,Jian Zhang. Effects of platelet-derived growth factor on nerve regeneration around implant in rats [J]. West China Journal of Stomatology, 2019, 37(4): 350-354. |
[7] | Tiantian Yu,Jin Liu,Junjing Yin,Xiangna Xu,Shengjie Yan,Jing Lan. Effects of concentrated growth factors on relieving postoperative reaction of guided bone regeneration in the esthetic zone [J]. West China Journal of Stomatology, 2019, 37(4): 398-402. |
[8] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[9] | Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report [J]. West China Journal of Stomatology, 2019, 37(1): 92-96. |
[10] | Feng Liao, Shibo Liu, Yao Liu, Hanghang Liu, Jian Hu, Xian Liu. Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariec-tomized rats [J]. West China Journal of Stomatology, 2018, 36(4): 367-371. |
[11] | Xinxin Ding, Yanmin Zhou, Xing-chen Xiang, Lin Meng, Qin Qin, Shan Ye. Research progress on chitosan composite scaffolds in bone tissue engineering [J]. West China Journal of Stomatology, 2018, 36(4): 441-446. |
[12] | Deng Xia, Bai Shi. Biomineralization of electrospun polycaprolactone-guided bone regeneration membrane [J]. West China Journal of Stomatology, 2016, 34(6): 570-574. |
[13] | Zhou Nuo, Huang Xuanping, Jiang Xianfang, Song Jichuan, Li Hua, Xie Qingtiao. . Experimental study on transplantation of bone morphogenetic protein-2 gene transfected bone mesenchymal stem cells compounded with Pluronic F-127 for promoting bone regeneration in rabbit mandibular distrac-tion osteogenesis [J]. West China Journal of Stomatology, 2013, 31(3): 247-252. |
[14] | Liu Man, Zhang Qiang, Zhou Liwei, Mo Anchun, Li Xiaoyu, Li Jidong. Research on the micro structure of antibacterial nanocomposite membrane and it’s biocompatibility as a guided bone regeneration membrane [J]. West China Journal of Stomatology, 2013, 31(2): 127-130. |
[15] | Li Shouyi, Cai Qingyi, Chen Gang, Zhu Xiaokong, Zhong Xiaomin, Peng Derui. Histological study of dual factor inducing axial vascularization in double-layered scaffold [J]. West China Journal of Stomatology, 2013, 31(2): 205-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||