West China Journal of Stomatology ›› 2019, Vol. 37 ›› Issue (2): 220-223.doi: 10.7518/hxkq.2019.02.016
Previous Articles Next Articles
Yunjie Li1,Yanhong Zhao1(),Qiang Yang2
Received:
2018-07-05
Revised:
2018-11-02
Online:
2019-04-01
Published:
2019-04-28
Contact:
Yanhong Zhao
E-mail:leafzh@126.com
Supported by:
CLC Number:
Yunjie Li,Yanhong Zhao,Qiang Yang. Development of cartilage extracellular matrix in cartilage tissue engineering[J]. West China Journal of Stomatology, 2019, 37(2): 220-223.
[1] | Suchorska WM, Augustyniak E, Richter M , et al. Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells[J]. Postepy Hig Med Dosw (Online), 2017(71):500-509. |
[2] |
Zeineddine HA, Frush TJ, Saleh ZM , et al. Applications of tissue engineering in joint arthroplasty: current concepts update[J]. Orthop Clin North Am, 2017,48(3):275-288.
doi: 10.1016/j.ocl.2017.03.002 URL |
[3] |
Wang XY, Li ZH, Shi T , et al. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2017,73:21-30.
doi: 10.1016/j.msec.2016.12.053 URL |
[4] |
Demoor M, Ollitrault D, Gomez-Leduc T , et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction[J]. Biochim Biophys Acta, 2014,1840(8):2414-2440.
doi: 10.1016/j.bbagen.2014.02.030 URL |
[5] |
Choi B, Kim S, Lin B , et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering[J]. ACS Appl Mater Interfaces, 2014,6(22):20110-20121.
doi: 10.1021/am505723k URL |
[6] |
Kiyotake EA, Beck EC, Detamore MS . Cartilage extracellular matrix as a biomaterial for cartilage regeneration[J]. Ann N Y Acad Sci, 2016,1383(1):139-159.
doi: 10.1111/nyas.2016.1383.issue-1 URL |
[7] |
Ng J, Wei YY, Zhou B , et al. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo[J]. Stem Cell Res Ther, 2016,7(1):183-194.
doi: 10.1186/s13287-016-0447-4 URL |
[8] |
Pak J, Lee JH, Park KS , et al. Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix[J]. Biores Open Access, 2016,5(1):192-200.
doi: 10.1089/biores.2016.0024 URL |
[9] |
Monibi FA, Cook JL . Tissue-derived extracellular matrix bioscaffolds: emerging applications in cartilage and meniscus repair[J]. Tissue Eng Part B Rev, 2017,23(4):386-398.
doi: 10.1089/ten.teb.2016.0431 URL |
[10] | 李丙岩 . 关节软骨细胞外基质源性微粒的制备及生物相容性评估[D]. 北京: 中国人民解放军医学院, 2014: 1-87. |
Li BY . Preparation of particles derived from articular cartilage extracellular matrix and biocompatibility assessment[D]. Beijing: Medical School of Chinese PLA, 2014: 1-87. | |
[11] | 李坤, 赵艳红, 徐晨 , 等. 基于软骨细胞外基质的取向支架的制备及评价[J]. 华西口腔医学杂志, 2017,35(1):51-56. |
Li K, Zhao YH, Xu C , et al. Development and characterization of oriented scaffolds derived from cartilage extracellular matrix[J]. West Chin J Stomatol, 2017,35(1):51-56. | |
[12] | 卢强, 张莉, 彭江 , 等. 可注射性组织工程软骨源性微载体的微观结构及其生物相容性观察[J]. 中国矫形外科杂志, 2009,17(9):688-691. |
Lu Q, Zhang L, Peng J , et al. Micromechanism and biocompatibility of cartilage derived microcarrier for injectable tissue engineering cartilage[J]. Orthopedic J Chin, 2009,17(9):688-691. | |
[13] | 唐成 . 自体骨髓间充质干细胞外基质(ECM)支架在软骨组织工程中的应用研究[D]. 南京: 南京医科大学, 2013: 1-113. |
Tang C . Application of autologous bone marrow mesenchymal stem cell extracellular matrix (ECM) scaffold in cartilage tissue engineering[D]. Nanjing: Nanjing Medical University, 2013: 1-113. | |
[14] | 高钺, 刘舒云, 黄靖香 , 等. 人脱细胞软骨细胞外基质对异种软骨种子细胞的影响[J]. 中国医药生物技术, 2014,9(2):81-87. |
Gao Y, Liu SY, Huang JX , et al. Effects of human extracellular matrix of chondrocytes on heterogenous chondrocytes[J]. Chin Med Biotechnol, 2014,9(2):81-87. | |
[15] |
Yang W, Lee S, Jo YH , et al. Effects of natural cartilaginous extracellular matrix on chondrogenic potential for cartilage cell transplantation[J]. Transplant Proc, 2014,46(4):1247-1250.
doi: 10.1016/j.transproceed.2013.11.082 URL |
[16] |
Dürr J, Goodman S, Potocnik A , et al. Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin[J]. Exp Cell Res, 1993,207(2):235-244.
doi: 10.1006/excr.1993.1189 URL |
[17] |
He F, Pei M . Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis[J]. J Tissue Eng Regen Med, 2013,7(1):73-84.
doi: 10.1002/term.v7.1 URL |
[18] |
Almeida HV, Eswaramoorthy R, Cunniffe GM , et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration[J]. Acta Biomater, 2016,36:55-62.
doi: 10.1016/j.actbio.2016.03.008 URL |
[19] |
Tang C, Jin CZ, Xu Y , et al. Chondrogenic differentiation could be induced by autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factor[J]. Tissue Eng Part A, 2016,22(3/4):222-232.
doi: 10.1089/ten.tea.2014.0491 URL |
[20] |
Sutherland AJ, Beck EC, Dennis SC , et al. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering[J]. PLoS One, 2015,10(5):e0121966.
doi: 10.1371/journal.pone.0121966 URL |
[21] | Tavassoli A, Matin MM, Niaki MA , et al. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold[J]. Iran J Basic Med Sci, 2015,18(12):1221-1227. |
[22] | 赵鹏, 刘舒云, 卢世璧 , 等. 软骨细胞外基质对脐带Wharton胶间充质干细胞生物学性状的作用[J]. 中国矫形外科杂志, 2013,21(11):1127-1132. |
Zhao P, Liu SY, Lu SB , et al. Effects of the cartilage extracellular matrix on the biological characteristics of Wharton’s jelly-derived mesenchymal stem cells in the umbilical cord[J]. Orthopedic J Chin, 2013,21(11):1127-1132. | |
[23] | 肖统光, 郝春香, 荆晓光 , 等. 关节软骨细胞外基质/人脐带Wharton胶复合多孔支架的制备及评估[J]. 中国组织工程研究, 2017,21(22):3470-3475. |
Xiao TG, Hao CX, Jing XG , et al. Preparation and evaluation of an articular cartilage extracellular matrix/human umbilical cord Wharton gel composite scaffold[J]. Chin J Tissue Eng Res, 2017,21(22):3470-3475. | |
[24] |
Thakkar S, Fernandes H, Moroni L . Decellularized extracellular matrix scaffolds for cartilage regeneration[J]. Methods Mol Biol, 2015,1340:133-151.
doi: 10.1007/978-1-4939-2938-2 URL |
[25] | 王之发 . 细胞外基质支架材料在软骨组织再生和骨组织工程中应用的初步探讨[J]. 西安: 第四军医大学, 2016: 1-130. |
Wang ZF . Preliminary study on the application of extracellular matrix scaffolds in cartilage regeneration and bone tissue engineering[D]. Xi’an: The Fourth Military Medical University, 2016: 1-130. | |
[26] |
Toh WS, Foldager CB, Hui JH , et al. Exploiting stem cell-extracellular matrix interactions for cartilage regeneration: a focus on basement membrane molecules[J]. Curr Stem Cell Res Ther, 2016,11(8):618-625.
doi: 10.2174/1574888X10666150723150525 URL |
[27] | 谭洪波, 段小军, 杨柳 , 等. 透明软骨材料经脱细胞处理后细胞外基质成分变化的比较[J]. 第三军医大学学报, 2013,35(19):2028-2032. |
Tan HB, Duan XJ, Yang L , et al. Alteration of extracellular matrix in decellularized articular cartilage treated by different technologies[J]. Acta Academiae Medicinae Militaris Tertiae, 2013,35(19):2028-2032. | |
[28] | 杨强 . 以软骨细胞外基质为基础构建组织工程软骨以及骨软骨复合体的实验研究[D]. 北京: 中国人民解放军军医进修学院, 2008: 1-208. |
Yang Q . Experimental study on preparation of tissue-engineered cartilage and osteochondral complex based on the extracellular matrix of chondrocytes[D]. Beijing: PLA Military Medical Training College, 2008: 1-208. | |
[29] | Yang Q, Teng BH, Wang LN , et al. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells[J]. Int J Nanomedicine, 2017(12):6721-6733. |
[1] | Wang Lin, Wang Xi, Ji Nan, Li Haimei, Cai Shixin. Mechanisms of the mechanically activated ion channel Piezo1 protein in mediating osteogenic differentiation of periodontal ligament stem cells via the Notch signaling pathway [J]. West China Journal of Stomatology, 2020, 38(6): 628-636. |
[2] | Ba Kai, Ni Duan, Wang Xinbo, Wei Xueqin, Li Na, Zheng Lian. Chondrocyte cocultures with stromal vascular fraction of adipose tissue promote cartilage regeneration in vivo [J]. West China Journal of Stomatology, 2020, 38(3): 240-244. |
[3] | Lin Yongsheng,Wang Fengzhi,Lei Xiaojing,He Jianmin. Comparative study with the effect of stromal cell derived factor-1 on osteogenic differentiation of human healthy and inflammatory periodontal ligament stem cells [J]. West China Journal of Stomatology, 2019, 37(5): 469-475. |
[4] | Jiehang Li,Zhifei Su,Xuan Bai,He Yuan,Jiyao Li. Effect of zoladronate on the proliferation and osteogenic differentiation of rat bone mesenchymal stem cells [J]. West China Journal of Stomatology, 2019, 37(3): 242-247. |
[5] | Yunjie Li,Binhong Teng,Yanhong Zhao,Qiang Yang,Lianyong Wang,Ying Huang. Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(3): 253-259. |
[6] | Feng Liao,Yao Liu,Hanghang Liu,Jian Hu,Shuang Zhao,Shimao Yang. Effect of Angelica sinensis polysaccharide on the osteogenic differentiation of bone marrow mesenchymal stem cells of rats with high glucose levels [J]. West China Journal of Stomatology, 2019, 37(2): 193-199. |
[7] | Jin Sun,Yun Liu,Qian Qu,Juan Qu,Wei Luo,Feng Zhang,Min. Wu. Effect of histone acetylation on osteogenic differentiation of periodontal ligament stem cells derived from periodontitis tissue [J]. West China Journal of Stomatology, 2019, 37(1): 102-105. |
[8] | Xin Zheng,Xin Xu,Jinzhi He,Ping Zhang,Jiao Chen,Xue-dong Zhou. Development and homeostasis of taste buds in mammals [J]. West China Journal of Stomatology, 2018, 36(5): 552-558. |
[9] | Ting Hui, Guangcan Zhang, Dandan Feng, Ping Ji. Role of neuropeptide substance P and the bone morphogenetic protein signaling pathway in osteogenic differentiation of ST2 cells [J]. West China Journal of Stomatology, 2018, 36(4): 378-383. |
[10] | Yu Ma, Shuhui Li, Xinxin Ding, Peiling. Wu. Effects of tumor necrosis factor-α on osteogenic differentiation and Notch signaling pathway in human periodontal ligament stem cells [J]. West China Journal of Stomatology, 2018, 36(2): 184-189. |
[11] | Jin Qiu, Huiyu Zhang, Li Liu, Yinghui Tan. Effect of bone morphogenetic protein-4 overexpression on the biological activity of mouse induced pluripotent stem cells [J]. West China Journal of Stomatology, 2018, 36(2): 190-193. |
[12] | Shengyin Yang, Ping Chen, Jibo Bao, Yixin Ding, Jinyang Zou, Zhigang Xie. Experimental study of demineralized dentin matrix on osteoinduction and related cells identification [J]. West China Journal of Stomatology, 2018, 36(1): 33-38. |
[13] | Wucheng Guo, Jieli Cheng, Zhengyi Yang, Yi Zhang, Enliang He, Jun Qian, Jingjing Song, Jin Sun, Lin Yuan. K (lysine) acetyltransferase 2A affects the osteogenic differentiation of periodontal ligament stem cells through the canonical Wnt pathway [J]. West China Journal of Stomatology, 2018, 36(1): 39-45. |
[14] | Xiaoxia Li, Jiaozi Fangteng, Shi Yu, Yuming Zhao, Lihong Ge. Clinical applications of stem cells from human exfoliated deciduous teeth in stem cell therapy [J]. West China Journal of Stomatology, 2017, 35(5): 533-537. |
[15] | Luan Yan, Deqin Yang. The effect of Toll-like receptor 4 in nicotine suppressing the osteogenic potential of periodontal ligament stem cells [J]. West China Journal of Stomatology, 2017, 35(4): 368-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||