West China Journal of Stomatology ›› 2018, Vol. 36 ›› Issue (5): 552-558.doi: 10.7518/hxkq.2018.05.016
Previous Articles Next Articles
Xin Zheng(),Xin Xu,Jinzhi He,Ping Zhang,Jiao Chen,Xue-dong Zhou(
)
Received:
2018-04-23
Revised:
2018-07-13
Online:
2018-10-01
Published:
2018-10-18
Supported by:
CLC Number:
Xin Zheng,Xin Xu,Jinzhi He,Ping Zhang,Jiao Chen,Xue-dong Zhou. Development and homeostasis of taste buds in mammals[J]. West China Journal of Stomatology, 2018, 36(5): 552-558.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Reynolds T . Hemlock alkaloids from Socrates to poison aloes[J]. Phytochemistry, 2005,66(12):1399-1406.
doi: 10.1016/j.phytochem.2005.04.039 URL pmid: 15955542 |
[2] |
Breslin PA . An evolutionary perspective on food and human taste[J]. Curr Biol, 2013,23(9):R409-R418.
doi: 10.1016/j.cub.2013.04.010 URL pmid: 23660364 |
[3] |
Reed DR, Knaapila A . Genetics of taste and smell: poisons and pleasures[J]. Prog Mol Biol Transl Sci, 2010,94:213-240.
doi: 10.1016/B978-0-12-385071-3.00012-5 URL pmid: 21075325 |
[4] |
Barlow LA . Progress and renewal in gustation: new insights into taste bud development[J]. Development, 2015,142(21):3620-3629.
doi: 10.1242/dev.120394 URL pmid: 26534983 |
[5] |
Chandrashekar J, Hoon MA, Ryba NJ , et al. The receptors and cells for mammalian taste[J]. Nature, 2006,444(7117):288-294.
doi: 10.1038/nature05401 URL pmid: 17108952 |
[6] |
Feng P, Huang LQ, Wang H . Taste bud homeostasis in health, disease, and aging[J]. Chem Senses, 2014,39(1):3-16.
doi: 10.1093/chemse/bjt059 URL pmid: 3864165 |
[7] |
Barlow LA, Klein OD . Developing and regenerating a sense of taste[J]. Curr Top Dev Biol, 2015,111:401-419.
doi: 10.1016/bs.ctdb.2014.11.012 URL |
[8] |
Ruo Redda MG, Allis S . Radiotherapy-induced taste im-pairment[J]. Cancer Treat Rev, 2006,32(7):541-547.
doi: 10.1016/j.ctrv.2006.06.003 URL |
[9] |
Mukherjee N, Carroll BL, Spees JL , et al. Pre-treatment with amifostine protects against cyclophosphamide-induced dis-ruption of taste in mice[J]. PLoS One, 2013,8(4):e61607.
doi: 10.1371/journal.pone.0061607 URL |
[10] |
Nguyen HM, Reyland ME, Barlow LA . Mechanisms of taste bud cell loss after head and neck irradiation[J]. J Neurosci, 2012,32(10):3474-3484.
doi: 10.1523/JNEUROSCI.4167-11.2012 URL |
[11] |
Kahn M . Can we safely target the WNT pathway[J]. Nat Rev Drug Discov, 2014,13(7):513-532.
doi: 10.1038/nrd4233 URL pmid: 24981364 |
[12] |
Takebe N, Miele L, Harris PJ , et al. Targeting Notch, Hed-gehog, and Wnt pathways in cancer stem cells: clinical update[J]. Nat Rev Clin Oncol, 2015,12(8):445-464.
doi: 10.1038/nrclinonc.2015.61 URL pmid: 4520755 |
[13] |
Breslin PA, Huang LQ . Human taste: peripheral anatomy, taste transduction, and coding[J]. Adv Otorhinolaryngol, 2006,63:152-190.
doi: 10.1159/000093760 URL pmid: 16733339 |
[14] |
Petersen CI, Jheon AH, Mostowfi P , et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size[J]. PLoS Genet, 2011,7(6):e1002098.
doi: 10.1371/journal.pgen.1002098 URL |
[15] |
Reiner DJ, Jan TA, Boughter JD , et al. Genetic analysis of tongue size and taste papillae number and size in recombi-nant inbred strains of mice[J]. Chem Senses, 2008,33(8):693-707.
doi: 10.1093/chemse/bjn025 URL |
[16] |
Witt M, Miller IJ . Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the rabbit tongue[J]. Histochemistry, 1992,98(3):173-182.
doi: 10.1007/BF00315876 URL |
[17] |
Liman ER, Zhang YV, Montell C . Peripheral coding of taste[J]. Neuron, 2014,81(5):984-1000.
doi: 10.1016/j.neuron.2014.02.022 URL |
[18] |
Pumplin DW, Yu C, Smith DV . Light and dark cells of rat vallate taste buds are morphologically distinct cell types[J]. J Comp Neurol, 1997,378(3):389-410.
doi: 10.1002/(ISSN)1096-9861 URL |
[19] |
Bartel DL, Sullivan SL, Lavoie EG , et al. Nucleoside tri-phosphate diphosphohydrolase-2 is the ecto-ATPase of type Ⅰcells in taste buds[J]. J Comp Neurol, 2006,497(1):1-12.
doi: 10.1002/(ISSN)1096-9861 URL |
[20] |
Finger TE, Danilova V, Barrows J , et al. ATP signaling is crucial for communication from taste buds to gustatory nerves[J]. Science, 2005,310(5753):1495-1499.
doi: 10.1126/science.1118435 URL pmid: 16322458 |
[21] |
Vandenbeuch A, Anderson CB, Parnes J , et al. Role of the ectonucleotidase NTPDase2 in taste bud function[J]. Proc Natl Acad Sci U S A, 2013,110(36):14789-14794.
doi: 10.1073/pnas.1309468110 URL pmid: 23959882 |
[22] |
Hoon MA, Adler E, Lindemeier J , et al. Putative mamma-lian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity[J]. Cell, 1999,96(4):541-551.
doi: 10.1016/S0092-8674(00)80658-3 URL |
[23] |
Zhao G, Zhang YF, Hoon MA , et al. The receptors for mam-malian sweet and umami taste[J]. Cell, 2003,115(3):255-266.
doi: 10.1016/S0092-8674(03)00844-4 URL pmid: 14636554 |
[24] |
Nelson G, Hoon MA, Chandrashekar J , et al. Mammalian sweet taste receptors[J]. Cell, 2001,106(3):381-390.
doi: 10.1016/S0092-8674(01)00451-2 URL |
[25] |
Nelson G, Chandrashekar J, Hoon MA , et al. An amino-acid taste receptor[J]. Nature, 2002,416(6877):199-202.
doi: 10.1038/nature726 URL pmid: 11894099 |
[26] |
Chandrashekar J, Mueller KL, Hoon MA , et al. T2Rs func-tion as bitter taste receptors[J]. Cell, 2000,100(6):703-711.
doi: 10.1016/S0092-8674(00)80706-0 URL pmid: 10761935 |
[27] |
Behrens M, Meyerhof W . Bitter taste receptors and human bitter taste perception[J]. Cell Mol Life Sci, 2006,63(13):1501-1509.
doi: 10.1007/s00018-006-6113-8 URL |
[28] |
Bushman JD, Ye WL, Liman E . A proton current associated with sour taste: distribution and functional properties[J]. FASEB J, 2015,29(7):3014-3026.
doi: 10.1096/fj.14-265694 URL pmid: 25857556 |
[29] |
Chandrashekar J, Yarmolinsky D, von Buchholtz L , et al. The taste of carbonation[J]. Science, 2009,326(5951):443-445.
doi: 10.1126/science.1174601 URL |
[30] |
Huang A, Chen XK, Hoon MA , et al. The cells and logic for mammalian sour taste detection[J]. Nature, 2006,442(7105):934-938.
doi: 10.1038/nature05084 URL pmid: 16929298 |
[31] |
Chandrashekar J, Kuhn C, Oka Y , et al. The cells and peri-pheral representation of sodium taste in mice[J]. Nature, 2010,464(7286):297-301.
doi: 10.1038/nature08783 URL |
[32] |
Oka Y, Butnaru M, von Buchholtz L , et al. High salt recruits aversive taste pathways[J]. Nature, 2013,494(7438):472-475.
doi: 10.1038/nature11905 URL pmid: 23407495 |
[33] |
Roper SD . The taste of table salt[J]. Pflugers Arch, 2015,467(3):457-463.
doi: 10.1007/s00424-014-1683-z URL pmid: 25559847 |
[34] |
Kapsimali M, Barlow LA . Developing a sense of taste[J]. Semin Cell Dev Biol, 2013,24(3):200-209.
doi: 10.1016/j.semcdb.2012.11.002 URL pmid: 23182899 |
[35] |
Mistretta CM, Liu HX . Development of fungiform papillae: patterned lingual gustatory organs[J]. Arch Histol Cytol, 2006,69(4):199-208.
doi: 10.1679/aohc.69.199 URL pmid: 17287575 |
[36] |
Oakley B, Witt M . Building sensory receptors on the tongue[J]. J Neurocytol, 2004,33(6):631-646.
doi: 10.1007/s11068-005-3332-0 URL pmid: 16217619 |
[37] |
Hall JM, Bell ML, Finger TE . Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papil-lae[J]. Dev Biol, 2003,255(2):263-277.
doi: 10.1016/S0012-1606(02)00048-9 URL pmid: 12648489 |
[38] |
Mistretta CM, Liu HX, Gaffield W , et al. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel loca-tions in dorsal lingual epithelium[J]. Dev Biol, 2003,254(1):1-18.
doi: 10.1016/S0012-1606(02)00014-3 URL |
[39] |
Thirumangalathu S, Harlow DE, Driskell AL , et al. Fate mapping of mammalian embryonic taste bud progenitors[J]. Development, 2009,136(9):1519-1528.
doi: 10.1242/dev.029090 URL pmid: 19363153 |
[40] |
Liu F, Thirumangalathu S, Gallant NM , et al. Wnt-beta-catenin signaling initiates taste papilla development[J]. Nat Genet, 2007,39(1):106-112.
doi: 10.1038/ng1932 URL pmid: 17128274 |
[41] |
Iwatsuki K, Liu HX, Grónder A , et al. Wnt signaling inte-racts with Shh to regulate taste papilla development[J]. Proc Natl Acad Sci U S A, 2007,104(7):2253-2258.
doi: 10.1073/pnas.0607399104 URL pmid: 17284610 |
[42] |
Zhu X, Liu Y, Zhao P , et al. Gpr177-mediated Wnt signaling is required for fungiform placode initiation[J]. J Dent Res, 2014,93(6):582-588.
doi: 10.1177/0022034514531985 URL pmid: 24736288 |
[43] |
Bitgood MJ, McMahon AP . Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo[J]. Dev Biol, 1995,172(1):126-138.
doi: 10.1006/dbio.1995.0010 URL |
[44] | Hall J, Finger T, MacCallum D , et al. Sonic hedgehog sig-naling in rodent tongue cultures[J]. Chem Senses, 1999,24:572. |
[45] |
Jung HS, Oropeza V, Thesleff I . Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae[J]. Mech Dev, 1999,81(1/2):179-182.
doi: 10.1016/S0925-4773(98)00234-2 URL |
[46] |
Arnold K, Sarkar A, Yram MA , et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice[J]. Cell Stem Cell, 2011,9(4):317-329.
doi: 10.1016/j.stem.2011.09.001 URL |
[47] |
Sarkar A, Hochedlinger K . The sox family of transcription factors: versatile regulators of stem and progenitor cell fate[J]. Cell Stem Cell, 2013,12(1):15-30.
doi: 10.1016/j.stem.2012.12.007 URL pmid: 3608206 |
[48] |
Okubo T, Pevny LH, Hogan BL . Sox2 is required for deve-lopment of taste bud sensory cells[J]. Genes Dev, 2006,20(19):2654-2659.
doi: 10.1101/gad.1457106 URL |
[49] |
Kapsimali M, Kaushik AL, Gibon G , et al. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity[J]. Development, 2011,138(16):3473-3484.
doi: 10.1242/dev.058669 URL pmid: 21791527 |
[50] |
Kito-Shingaki A, Seta YJ, Toyono T , et al. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1[J]. Chem Senses, 2014,39(5):403-414.
doi: 10.1093/chemse/bju010 URL pmid: 24682237 |
[51] |
Seta YJ, Oda M, Kataoka S , et al. Mash1 is required for the differentiation of AADC-positive type Ⅲ cells in mouse taste buds[J]. Dev Dyn, 2011,240(4):775-784.
doi: 10.1002/dvdy.22576 URL pmid: 21322090 |
[52] |
Ota MS, Kaneko Y, Kondo K , et al. Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation[J]. PLoS Genet, 2009,5(4):e1000443.
doi: 10.1371/journal.pgen.1000443 URL pmid: 2655725 |
[53] |
Beidler LM, Smallman RL . Renewal of cells within taste buds[J]. J Cell Biol, 1965,27(2):263-272.
doi: 10.1083/jcb.27.2.263 URL pmid: 5884625 |
[54] |
Hamamichi R, Asano-Miyoshi M, Emori Y . Taste bud con-tains both short-lived and long-lived cell populations[J]. Neuroscience, 2006,141(4):2129-2138.
doi: 10.1016/j.neuroscience.2006.05.061 URL pmid: 16843606 |
[55] |
Perea-Martinez I, Nagai T, Chaudhari N . Functional cell types in taste buds have distinct longevities[J]. PLoS One, 2013,8(1):e53399.
doi: 10.1371/journal.pone.0053399 URL pmid: 23320081 |
[56] |
Ueda K, Ichimori Y, Maruyama H , et al. Cell-type specific occurrence of apoptosis in taste buds of the rat circumvallate papilla[J]. Arch Histol Cytol, 2008,71(1):59-67.
doi: 10.1679/aohc.71.59 URL pmid: 18622094 |
[57] | Gaillard D, Xu MG, Liu F , et al. Β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates[J]. PLoS Genet, 2015,11(5):e1005208. |
[58] |
Okubo T, Clark C, Hogan BL . Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate[J]. Stem Cells, 2009,27(2):442-450.
doi: 10.1634/stemcells.2008-0611 URL pmid: 19038788 |
[59] |
Miura H, Kusakabe Y, Sugiyama C , et al. Shh and Ptc are associated with taste bud maintenance in the adult mouse[J]. Mech Dev, 2001,106(1/2):143-145.
doi: 10.1016/S0925-4773(01)00414-2 URL pmid: 11472844 |
[60] |
Miura H, Kusakabe Y, Harada S . Cell lineage and diffe-rentiation in taste buds[J]. Arch Histol Cytol, 2006,69(4):209-225.
doi: 10.1679/aohc.69.209 URL pmid: 17287576 |
[61] |
Miura H, Scott JK, Harada S , et al. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells[J]. Dev Dyn, 2014,243(10):1286-1297.
doi: 10.1002/dvdy.v243.10 URL |
[62] |
Luo XY, Okubo T, Randell S , et al. Culture of endodermal stem/progenitor cells of the mouse tongue[J]. In Vitro Cell Dev Biol Anim, 2009,45(1/2):44-54.
doi: 10.1007/s11626-008-9149-2 URL pmid: 18830772 |
[63] |
Tanaka T, Komai Y, Tokuyama Y , et al. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells[J]. Nat Cell Biol, 2013,15(5):511-518.
doi: 10.1038/ncb2719 URL pmid: 23563490 |
[64] |
Hisha H, Tanaka T, Kanno S , et al. Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells[J]. Sci Rep, 2013,3:3224.
doi: 10.1038/srep03224 URL |
[65] |
Yee K, Li Y, Redding KM , et al. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue[J]. Stem Cells, 2013,31(5):992-1000.
doi: 10.1002/stem.1338 URL pmid: 3637415 |
[66] |
Snippert HJ, Haegebarth A, Kasper M , et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science, 2010,327(5971):1385-1389.
doi: 10.1126/science.1184733 URL pmid: 20223988 |
[67] |
Barker N, van Es JH, Kuipers J , et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007,449(7165):1003-1007.
doi: 10.1038/nature06196 URL pmid: 17934449 |
[68] |
St John SJ, Garcea M, Spector AC . The time course of taste bud regeneration after glossopharyngeal or greater superfi-cial petrosal nerve transection in rats[J]. Chem Senses, 2003,28(1):33-43.
doi: 10.1093/chemse/28.1.33 URL |
[69] |
Takeda N, Jain R, Li DQ , et al. Lgr5 identifies progenitor cells capable of taste bud regeneration after injury[J]. PLoS One, 2013,8(6):e66314.
doi: 10.1371/journal.pone.0066314 URL pmid: 3688887 |
[70] |
Ren WW, Lewandowski BC, Watson J , et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo[J]. Proc Natl Acad Sci U S A, 2014,111(46):16401-16406.
doi: 10.1073/pnas.1409064111 URL pmid: 25368147 |
[71] |
Liu HX, Ermilov A, Grachtchouk M , et al. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance[J]. Dev Biol, 2013,382(1):82-97.
doi: 10.1016/j.ydbio.2013.07.022 URL |
[72] |
Castillo D, Seidel K, Salcedo E , et al. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium[J]. Development, 2014,141(15):2993-3002.
doi: 10.1242/dev.107631 URL |
[73] |
Gaillard D, Barlow LA . Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells[J]. Genesis, 2011,49(4):295-306.
doi: 10.1002/dvg.v49.4 URL |
[74] |
Matsumoto I, Ohmoto M, Narukawa M , et al. Skn-1a (Pou2f3) specifies taste receptor cell lineage[J]. Nat Neurosci, 2011,14(6):685-687.
doi: 10.1038/nn.2820 URL pmid: 21572433 |
[75] |
Miura H, Kusakabe Y, Kato H , et al. Co-expression pattern of Shh with Prox1 and that of Nkx2. 2 with Mash1 in mouse taste bud[J]. Gene Expr Patterns, 2003,3(4):427-430.
doi: 10.1016/S1567-133X(03)00081-4 URL pmid: 12915306 |
[76] |
Seta YJ, Stoick-Cooper CL, Toyono T , et al. The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds[J]. Arch Histol Cytol, 2006,69(3):189-198.
doi: 10.1679/aohc.69.189 URL |
[77] |
Smith DV, St John SJ . Neural coding of gustatory informa-tion[J]. Curr Opin Neurobiol, 1999,9(4):427-435.
doi: 10.1016/S0959-4388(99)80064-6 URL pmid: 10448155 |
[78] |
Erickson RP . The evolution of neural coding ideas in the chemical senses[J]. Physiol Behav, 2000,69(1/2):3-13.
doi: 10.1016/S0031-9384(00)00193-1 URL pmid: 10854913 |
[79] |
Caicedo A, Kim KN, Roper SD . Individual mouse taste cells respond to multiple chemical stimuli[J]. J Physiol (Lond), 2002,544(Pt 2):501-509.
doi: 10.1113/jphysiol.2002.027862 URL |
[80] | Lee H, Macpherson LJ, Parada CA , et al. Rewiring the taste system[J]. Nature, 2017,548(7667):330-333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||