West China Journal of Stomatology ›› 2018, Vol. 36 ›› Issue (4): 441-446.doi: 10.7518/hxkq.2018.04.016
• Orginal Article • Previous Articles Next Articles
Xinxin Ding1(), Yanmin Zhou1(
), Xing-chen Xiang1, Lin Meng2, Qin Qin1, Shan Ye1
Received:
2017-06-30
Revised:
2018-05-16
Online:
2018-08-01
Published:
2018-08-01
Supported by:
CLC Number:
Xinxin Ding, Yanmin Zhou, Xing-chen Xiang, Lin Meng, Qin Qin, Shan Ye. Research progress on chitosan composite scaffolds in bone tissue engineering[J]. West China Journal of Stomatology, 2018, 36(4): 441-446.
[1] | Venkatesan J, Kim SK.Chitosan composites for bone tissue engineering—an overview[J]. Mar Drugs, 2010, 8(8): 2252-2266. |
[2] | Deepthi S, Venkatesan J, Kim SK, et al.An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1338-1353. |
[3] | Pighinelli L, Kucharska M.Chitosan-hydroxyapatite com-posites[J]. Carbohydr Polym, 2013, 93(1): 256-262. |
[4] | Dhivya S, Saravanan S, Sastry TP, et al.Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo[J]. J Nanobiotechnology, 2015, 13: 40. |
[5] | Ai J, Rezaei-Tavirani M, Biazar E, et al.Mechanical pro-perties of chitosan-starch composite filled hydroxyapatite micro-and nanopowders[J]. J Nanomater, 2011, 2011(1): 99-110. |
[6] | Tylman M, Mucha M.Chitosan scaffolds with nanosilver layer for bone implantation obtained by electrolytic method[J]. Mater Sci Technol, 2014, 30(5): 582-586. |
[7] | Chen Y, Zhang F, Fu Q, et al.In vitro proliferation and osteo-genic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel[J]. J Biomater Appl, 2016, 31(3): 317-327. |
[8] | Gao C, Cai Y, Kong X, et al.Development and characteri-zation of injectable chitosan-based hydrogels containing dexamethasone/rhBMP-2 loaded hydroxyapatite nanoparticles[J]. Mater Lett, 2013, 93(1): 312-315. |
[9] | Beşkardeş IG, Demirtaş TT, Durukan MD, et al.Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds[J]. J Tissue Eng Regen Med, 2015, 9(11): 1233-1246. |
[10] | Beşkardeş IG, Hayden RS, Glettig DL, et al.Bone tissue engineering with scaffold-supported perfusion co-cultures of human stem cell-derived osteoblasts and cell line-derived osteoclasts[J]. Process Biochem, 2017, 59: 303-311. |
[11] | Li B, Wang L, Hao Y, et al.UV-Crosslinkable and injec-table chitosan/hydroxyapatite hybrid hydrogel for critical-size calvarial defect repair in vivo[J]. J Nanotechnol Eng Med, 2015, 6(4). DOI: 10.1115/1.4032902. |
[12] | Sa Y, Wang M, Deng HB, et al.Beneficial effects of bio-mimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan-glycerophosphate hydrogel on the per-formance of injectable polymethylmethacrylate[J]. RSC Adv, 2015, 5(110): 91082-91092. |
[13] | Wang M, Feng X, Wang T, et al.Synthesis and characteri-zation of an injectable and self-curing polymethylmetha-crylate cement functionalized with biomimetic chitosan-polyvinyl alcohol/nano-sized hydroxyapatite/silver hydrogel[J]. Rsc Adv, 2016, 6(65): 60609-60619. |
[14] | Nguyen TP, Doan BHP, Dang DV, et al.Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration[J]. Adv Nat Sci: Nanosci Nanotechnol, 2014, 5(1): 015012. |
[15] | Huang Z, Feng Q, Yu B, et al.Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite[J]. Mater Sci Eng C, 2011, 31(3): 683-687. |
[16] | Wang LM, Stegemann JP.Thermogelling chitosan and colla-gen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering[J]. Biomaterials, 2010, 31(14): 3976-3985. |
[17] | Wang LM, Stegemann JP.Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration[J]. Acta Biomater, 2011, 7(6): 2410-2417. |
[18] | Moreira CD, Carvalho SM, Mansur HS, et al.Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 1207-1216. |
[19] | Arakawa C, Ng R, Tan S, et al.Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering[J]. J Tissue Eng Regen Med, 2017, 11(1): 164-174. |
[20] | Cui J, Liang J, Wen Y, et al.In vitro and in vivo evaluation of chitosan/β-glycerol phosphate composite membrane for guided bone regeneration[J]. J Biomed Mater Res A, 2014, 102(9): 2911-2917. |
[21] | Huang Z, Yu B, Feng QL, et al.Modification of an injectable chitosan scaffold by blending with NaHCO3 to improve cytocompatibility[J]. PolymPolym Compos, 2011, 19(9): 781-787. |
[22] | Lin YJ, Hsu FC, Chou CW, et al.Poly(acrylic acid)-chitosan-silica hydrogel carrying platelet gel for bone defect repair[J]. J Mater Chem B, 2014, 2(47): 8329-8337. |
[23] | Zazakowny K, Lewandowska-Łańcucka J, Mastalska-Popław-ska J, et al. Biopolymeric hydrogels-nanostructured TiO2, hybrid materials as potential injectable scaffolds for bone regeneration[J]. Colloids Surf B Biointerfaces, 2016, 148: 607-614. |
[24] | Chen Y, Zhou Y, Yang S, et al.Novel bone substitute com-posed of chitosan and strontium-doped α-calcium sulfate hemihydrate: fabrication, characterisation and evaluation of biocompatibility[J]. Mater Sci Eng C Mater Biol Appl, 2016, 66: 84-91. |
[25] | Tian A, Zhai JJ, Peng Y, et al.Osteoblast response to tita-nium surfaces coated with strontium ranelate-loaded chitosan film[J]. Int J Oral Maxillofac Implants, 2014, 29(6): 1446-1453. |
[26] | Douglas TEL, Pilarek M, Kalaszczyńska I, et al.Enrichment of chitosan hydrogels with perfluorodecalin promotes gela-tion and stem cell vitality[J]. Mater Lett, 2014, 128(128): 79-84. |
[27] | Bush JR, Liang H, Dickinson M, et al.Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration[J]. Polym Adv Technol, 2016, 27(8): 1050-1055. |
[28] | Luca L, Rougemont AL, Walpoth BH, et al.Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect[J]. J Biomed Mater Res A, 2015, 96(1): 66-74. |
[29] | Ran J, Hu J, Sun G, et al.A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range[J]. Int J Biol Macromol, 2016, 93(Pt A): 87-97. |
[30] | Abd-khorsand S, Saber-samandari S, Saber-samandari S. Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility[J]. Int J Biol Macromol, 2017, 101: 51-58. |
[31] | Balagangadharan K, Dhivya S, Selvamurugan N.Chitosan based nanofibers in bone tissue engineering[J]. Int J Biol Macromol, 2016, 104(Pt B): 1372-1382. |
[32] | Saravanan S, Leena RS, Selvamurugan N.Chitosan based biocomposite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1354-1365. |
[33] | Arslan-Yildiz AH, El Assal R, Chen P, et al.Towards arti-ficial tissue models: past, present, and future of 3D bioprinting[J]. Biofabrication, 2016, 8(1): 014103. |
[34] | Ozbolat IT.Bioprinting scale-up tissue and organ constructs for transplantation[J]. Trends Biotechnol, 2015, 33(7): 395-400. |
[35] | Liu C, Liu Y, Li S, et al.Bioprinted chitosan and hydroxya-patite micro-channels structures scaffold for vascularization of bone regeneration[J]. J Biomater Tissue Eng, 2017, 7(1): 28-34. |
[36] | Demirtaş TT, Irmak G, Gümüşderelioğlu M.A bioprintable form of chitosan hydrogel for bone tissue engineering[J]. Biofabrication, 2017, 9(3): 035003. |
[37] | Huang J, Fu H, Wang ZY, et al.BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting[J]. Rsc Advances, 2016, 6(110): 108423-108430. |
[38] | Yang Y, Yang SB, Wang YG, et al.Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteo-conductive composite scaffold functionalized with quater-nized chitosan[J]. Acta Biomater, 2016, 46: 112-128. |
[39] | Akkineni AR, Ahlfeld T, Lode A, et al.A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs[J]. Biofabrication, 2016, 8(4): 045001. |
[40] | Malda J, Visser J, Melchels FP, et al.25th anniversary article: engineering hydrogels for biofabrication[J]. Adv Mater, 2013, 25(36): 5011-5028. |
[41] | Perez RA, Kim HW.Core-shell designed scaffolds for drug delivery and tissue engineering[J]. Acta Biomater, 2015, 21: 2-19. |
[42] | Venkatesan J, Anil S, Kim SK, et al.Chitosan as a vehicle for growth factor delivery: various preparations and their applications in bone tissue regeneration[J]. Int J Biol Macro-mol, 2017, 104(Pt B): 1383-1397. |
[43] | Ji YH, Wang MB, Liu WQ, et al.Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration[J]. J Biomed Mater Res A, 2017, 105(6): 1593-1606. |
[44] | Chen Y, Liu X, Liu R, et al.Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo[J]. Theranostics, 2017, 7(5): 1072-1087. |
[45] | Mi L, Liu HQ, Gao Y, et al.Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration[J]. Int J Biol Macromol, 2017, 101: 341-347. |
[46] | Deepthi S, Venkatesan J, Kim SK, et al.An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1338-1353. |
[47] | Saravanan S, Leena RS, Selvamurugan N.Chitosan based biocomposite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1354-1365. |
[1] | Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration [J]. West China Journal of Stomatology, 2020, 38(5): 571-575. |
[2] | Liu Yiping, Wang Jue, Tian Zilu, Zhai Peisong, Wang Zhanqi, Zhou Yanmin, Ni Shilei. Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin [J]. West China Journal of Stomatology, 2020, 38(3): 314-318. |
[3] | Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells [J]. West China Journal of Stomatology, 2020, 38(3): 324-329. |
[4] | Tiantian Yu,Jin Liu,Junjing Yin,Xiangna Xu,Shengjie Yan,Jing Lan. Effects of concentrated growth factors on relieving postoperative reaction of guided bone regeneration in the esthetic zone [J]. West China Journal of Stomatology, 2019, 37(4): 398-402. |
[5] | Yunjie Li,Binhong Teng,Yanhong Zhao,Qiang Yang,Lianyong Wang,Ying Huang. Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering [J]. West China Journal of Stomatology, 2019, 37(3): 253-259. |
[6] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[7] | Fei Xu,Yang Cao,Ping Yin,Liwei Ma,Jijia Li,Changyun Fang. Effects of three drying methods on the physical properties and drug delivery in chitosan microspheres [J]. West China Journal of Stomatology, 2019, 37(2): 149-154. |
[8] | Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report [J]. West China Journal of Stomatology, 2019, 37(1): 92-96. |
[9] | Qun Lei,Dong Lin,Wenxiu Huang,Dong Wu,Jiang Chen. Effects of calcium ion on the migration and osteogenic differentiation of human osteoblasts [J]. West China Journal of Stomatology, 2018, 36(6): 602-608. |
[10] | Ting Wei,Xinwei Zhang,Huiqiang Sun,Mengyun Mao. Selective laser sintering and performances of porous titanium implants [J]. West China Journal of Stomatology, 2018, 36(5): 532-538. |
[11] | Feng Liao, Shibo Liu, Yao Liu, Hanghang Liu, Jian Hu, Xian Liu. Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariec-tomized rats [J]. West China Journal of Stomatology, 2018, 36(4): 367-371. |
[12] | Huaying Shao, Yigong Zhang, Xue Yang, Qiongyue Zhang, Xiaohong Wu. Effects of inhibitory concentration minocycline on the proliferation, differentiation, and mineralization of osteoblasts [J]. West China Journal of Stomatology, 2018, 36(2): 140-145. |
[13] | Binhong Teng, Yanhong Zhao, Lianyong Wang, Qiang Yang, Hongfa Li, Yunjie Li. Preparation and characterization of oriented scaffolds derived from cartilage extracellular matrix and silk fibroin [J]. West China Journal of Stomatology, 2018, 36(1): 17-22. |
[14] | Shengyin Yang, Ping Chen, Jibo Bao, Yixin Ding, Jinyang Zou, Zhigang Xie. Experimental study of demineralized dentin matrix on osteoinduction and related cells identification [J]. West China Journal of Stomatology, 2018, 36(1): 33-38. |
[15] | Yuanyuan Liu, Xiumei Guan, Min Cheng, Xin Li, Yueyang Pan, Zhiliang Guo. Role of adenosine triphosphate-sensitive potassium channel in hydrogen sulfide-induced inhibition of high glucose-induced osteoblast damage [J]. West China Journal of Stomatology, 2017, 35(5): 473-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||