West China Journal of Stomatology ›› 2020, Vol. 38 ›› Issue (3): 314-318.doi: 10.7518/hxkq.2020.03.015
Previous Articles Next Articles
Liu Yiping, Wang Jue, Tian Zilu, Zhai Peisong, Wang Zhanqi, Zhou Yanmin, Ni Shilei()
Received:
2019-09-01
Revised:
2020-02-23
Online:
2020-06-01
Published:
2020-05-28
Contact:
Shilei Ni
E-mail:88547872@qq.com
Supported by:
CLC Number:
Liu Yiping, Wang Jue, Tian Zilu, Zhai Peisong, Wang Zhanqi, Zhou Yanmin, Ni Shilei. Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin[J]. West China Journal of Stomatology, 2020, 38(3): 314-318.
Add to citation manager EndNote|Ris|BibTeX
[1] | 于世凤 . 口腔组织病理学[M]. 北京: 人民卫生出版社, 2012. |
Yu SF. Oral histology and pathology[M]. Beijing: People’s Medical Publishing House, 2012. | |
[2] | Huang GT . Dental pulp and dentin tissue engineering and regeneration: advancement and challenge[J]. Front Biosci (Elite Ed), 2011,3:788-800. |
[3] | Pashley DH . Dentin permeability, dentin sensitivity, and treatment through tubule occlusion[J]. J Endod, 1986,12(10):465-474. |
[4] | Arana-Chavez VE, Massa LF . Odontoblasts: the cells forming and maintaining dentine[J]. Int J Biochem Cell Biol, 2004,36(8):1367-1373. |
[5] | Chang B, Svoboda KKH, Liu X . Cell polarization: from epithelial cells to odontoblasts[J]. Eur J Cell Biol, 2019,98(1):1-11. |
[6] | Magloire H, Maurin JC, Couble ML , et al. Topical review. Dental pain and odontoblasts: facts and hypotheses[J]. J Orofac Pain, 2010,24(4):335-349. |
[7] | 陈凤 . 根尖孔大小与矿化微环境对牙髓再生的影响[D]. 南宁: 广西医科大学, 2017. |
Chen F . Effect of apical pore size and mineralized microenvironment on pulp regeneration[D]. Nanning: Guangxi Medical University, 2017. | |
[8] | Miyashita S, Ahmed NE, Murakami M , et al. Mechanical forces induce odontoblastic differentiation of mesenchymal stem cells on three-dimensional biomimetic scaffolds[J]. J Tissue Eng Regen Med, 2017,11(2):434-446. |
[9] |
Shao MY, Fu ZS, Cheng R , et al. The presence of open dentinal tubules affects the biological properties of dental pulp cells ex vivo[J]. Mol Cells, 2011,31(1):65-71.
doi: 10.1007/s10059-011-0010-1 URL |
[10] | Ho CC, Fang HY, Wang B , et al. The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells[J]. Int Endod J, 2018,51(Suppl 4):e291-e300. |
[11] | Bhuptani RS, Patravale VB . Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells[J]. Int J Pharm, 2016,515(1/2):555-564. |
[12] | Theodorou GS, Kontonasaki E, Theocharidou A , et al. Sol-gel derived Mg-based ceramic scaffolds doped with zinc or copper ions: preliminary results on their synjournal, characterization, and biocompatibility[J]. Int J Biomater, 2016,2016:3858301. |
[13] |
Cai XJ, Ten Hoopen S, Zhang WB , et al. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro[J]. J Biomed Mater Res A, 2017,105(9):2597-2607.
doi: 10.1002/jbm.v105.9 URL |
[14] | Tonomura A, Mizuno D, Hisada A , et al. Differential effect of scaffold shape on dentin regeneration[J]. Ann Biomed Eng, 2010,38(4):1664-1671. |
[15] | Huang GT, Yamaza T, Shea LD , et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model[J]. Tissue Eng Part A, 2010,16(2):605-615. |
[16] |
AbdulQader ST, Rahman IA, Thirumulu KP , et al. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells[J]. J Biomater Appl, 2016,30(9):1300-1311.
doi: 10.1177/0885328215625759 URL |
[17] |
Jiao L, Xie L, Yang B , et al. Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration[J]. Biomaterials, 2014,35(18):4929-4939.
doi: 10.1016/j.biomaterials.2014.03.016 URL |
[18] |
El-Backly RM, Massoud AG, El-Badry AM , et al. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits[J]. Aust Endod J, 2008,34(2):52-67.
doi: 10.1111/aej.2008.34.issue-2 URL |
[19] |
Vallés-Lluch A, Novella-Maestre E, Sancho-Tello M , et al. Mimicking natural dentin using bioactive nanohybrid scaffolds for dentinal tissue engineering[J]. Tissue Eng Part A, 2010,16(9):2783-2793.
doi: 10.1089/ten.tea.2010.0090 URL |
[20] |
Wang J, Liu XH, Jin XB , et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly (L-lactic acid) scaffolds in vitro and in vivo[J]. Acta Biomater, 2010,6(10):3856-3863.
doi: 10.1016/j.actbio.2010.04.009 URL |
[21] |
Teng WQ, Long TJ, Zhang QR , et al. A tough, precision-porous hydrogel scaffold: ophthalmologic applications[J]. Biomaterials, 2014,35(32):8916-8926.
doi: 10.1016/j.biomaterials.2014.07.013 URL |
[22] |
Woo KM, Chen VJ, Jung HM , et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects[J]. Tissue Eng Part A, 2009,15(8):2155-2162.
doi: 10.1089/ten.tea.2008.0433 URL |
[23] |
Kuang R, Zhang ZP, Jin XB , et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp[J]. Acta Biomater, 2016,33:225-234.
doi: 10.1016/j.actbio.2016.01.032 URL |
[24] |
Khoroushi M, Foroughi MR, Karbasi S , et al. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells[J]. Mater Sci Eng C Mater Biol Appl, 2018,89:128-139.
doi: 10.1016/j.msec.2018.03.028 URL |
[25] |
Wang SN, Gao XJ, Gong WY , et al. Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction[J]. Acta Biomater, 2014,10(6):2792-2803.
doi: 10.1016/j.actbio.2014.02.013 URL |
[26] | Lin XX, Shi Y, Cao YL , et al. Recent progress in stem cell differentiation directed by material and mechanical cues[J]. Biomed Mater, 2016,11(1):014109. |
[27] |
Wang J, Ma HY, Jin XB , et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells[J]. Biomaterials, 2011,32(31):7822-7830.
doi: 10.1016/j.biomaterials.2011.04.034 URL |
[28] |
Shi ZL, Huang X, Cai YR , et al. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells[J]. Acta Biomater, 2009,5(1):338-345.
doi: 10.1016/j.actbio.2008.07.023 URL |
[29] | Lin S, van den Bergh W, Baker S , et al. Protein interactions with nanoporous Sol-gel derived bioactive glasses[J]. Acta Biomater, 2011,7(10):3606-3615. |
[30] |
Webster TJ, Ergun C, Doremus RH , et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics[J]. J Biomed Mater Res, 2000,51(3):475-483.
doi: 10.1002/(ISSN)1097-4636 URL |
[31] | Lei B, Chen XF, Wang YJ , et al. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation[J]. J Biomed Mater Res A, 2010,94(4):1091-1099. |
[32] | Ma C, Qu TJ, Chang B , et al. 3D maskless micropatterning for regeneration of highly organized tubular tissues[J]. Adv Healthc Mater, 2018,7(3). doi: 10.1002/adhm.201700738. |
[33] | Haeri M, Sagomonyants K, Mina M , et al. Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro[J]. Regen Eng Transl Med, 2017,3(2):94-105. |
[34] | Her GJ, Wu HC, Chen MH , et al. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages[J]. Acta Biomater, 2013,9(2):5170-5180. |
[35] | Liu NX, Zhou M, Zhang Q , et al. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway[J]. Cell Prolif, 2018,51(2):e12435. |
[36] | Qu TJ, Jing JJ, Ren YS , et al. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix[J]. Acta Biomater, 2015,16:60-70. |
[37] | Liu XH, Smith LA, Hu J , et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering[J]. Biomaterials, 2009,30(12):2252-2258. |
[38] | Qu TJ, Jing JJ, Jiang Y , et al. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration[J]. Tissue Eng Part A, 2014,20(17/18):2422-2433. |
[39] |
Jun SK, Kim HW, Lee HH , et al. Zirconia-incorporated zinc oxide eugenol has improved mechanical properties and cytocompatibility with human dental pulp stem cells[J]. Dent Mater, 2018,34(1):132-142.
doi: 10.1016/j.dental.2017.09.021 URL |
[1] | Enimubai Daerya, Zhang Di, Awuti Gulinuer. Comparison of the osteogenic effects of demineralized dentin matrix and acellular dentin matrix [J]. West China Journal of Stomatology, 2024, 42(1): 28-36. |
[2] | Wang Zi, Xue Ming. Formation of dentinal microcracks after root canal preparation with four kinds of mechanical nickel-titanium files [J]. West China Journal of Stomatology, 2024, 42(1): 75-81. |
[3] | Yu Yuanyuan, Zhong Shuaiqi, Sun Weilian, Lei Lihong.. Application of digital technology and platelet-rich fibrin technology in a novel regenerative treatment for posterior lingual furcation defect: a 6-year follow-up case report [J]. West China Journal of Stomatology, 2023, 41(5): 582-591. |
[4] | Wu Hao, Li Ying, Wang Yuzhuo, Yu Jize, Bao Xingfu, Hu Min. Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism [J]. West China Journal of Stomatology, 2023, 41(2): 140-148. |
[5] | Wang Li, Wu Fei, Xiao Mo, Chen Yu-xin, Wu Ligeng. Prediction of pulp exposure risk of carious pulpitis based on deep learning [J]. West China Journal of Stomatology, 2023, 41(2): 218-224. |
[6] | Tan Zhongjuan, Luo Yuanyuan, Yang Li. Basic fibroblast growth factor/chitosan derivatives/collagen composite thermosensitive hydrogel promotes perio-dontal tissue regeneration in rats [J]. West China Journal of Stomatology, 2023, 41(1): 21-28. |
[7] | Meng Yuchen, Huang Fan, Wang Silin, Huang Xin, Lu Yi, Pei Dandan. Bonding properties of mild universal adhesives to dentin pretreated with hydroxyapatite-based desensitizing agents [J]. West China Journal of Stomatology, 2022, 40(6): 668-675. |
[8] | Li Dexiong, Cao Runyuan, Chen Jiang. Preliminary study of silk fibroin porous scaffold for oral soft-tissue thickening [J]. West China Journal of Stomatology, 2022, 40(5): 513-521. |
[9] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[10] | Gong Jiaming, Zhang Qihang, Gou Ping, Wang Hui, Yu Jiaying, Yu Zhanhai. Meta-analysis of application of autogenous dentin for alveolar ridge augmentation [J]. West China Journal of Stomatology, 2022, 40(5): 566-575. |
[11] | Lin Qi, Lin Yu, Xie Yunde, Ma Zhongxiong.. Atomic force microscopy observation of the effect of laser ablation on the nanostructures of the dentin surface [J]. West China Journal of Stomatology, 2022, 40(2): 155-161. |
[12] | Han Anpeng, Lu Fangli, Lu Yuping, Li Qiang, Chen Dong. Micro-CT study on isolated teeth with hereditary dentin defects [J]. West China Journal of Stomatology, 2022, 40(2): 162-168. |
[13] | Liao Li, Tian Weidong.. Prospect on the application of mesenchymal stem cell-derived extracellular vesicles in the regeneration of dental and maxillofacial tissues [J]. West China Journal of Stomatology, 2022, 40(1): 7-13. |
[14] | Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration [J]. West China Journal of Stomatology, 2021, 39(6): 624-632. |
[15] | Wang Yanan, Wu Xuan, Jia Tingting, Feng Yao, Liu Shiyue, Xu Xin, Zhang Dongjiao. Effect of type 2 diabetes mellitus on mandibular bone regeneration and the expression of T helper cell 17/regulat-ory T cell-related factors in mice [J]. West China Journal of Stomatology, 2021, 39(6): 642-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||