1 |
Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions[J]. J Orthop Surg Res, 2014, 9(1): 18.
|
2 |
Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015, 14(1): 23-36.
|
3 |
崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007.
|
|
Cui FZ. Biomineralization[M]. Beijing: Tsinghua University Press, 2007.
|
4 |
Sharma V, Srinivasan A, Nikolajeff F, et al. Biomineralization process in hard tissues: the interaction complexity within protein and inorganic counterparts[J]. Acta Biomater, 2021, 120: 20-37.
|
5 |
Zhang J, Wang J, Ma CW, et al. Hydroxyapatite formation coexists with amyloid-like self-assembly of human amelogenin[J]. Int J Mol Sci, 2020, 21(8): E2946.
|
6 |
Chen L, Yuan H, Tang B, et al. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro[J]. Caries Res, 2015, 49(3): 282-290.
|
7 |
Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions[J]. Microsc Res Tech, 2019, 82(7): 1065-1072.
|
8 |
Alkilzy M, Tarabaih A, Santamaria RM, et al. Self-assembling peptide P11-4 and fluoride for regenerating ena-mel[J]. J Dent Res, 2018, 97(2): 148-154.
|
9 |
Welk A, Ratzmann A, Reich M, et al. Effect of self-assembling peptide P11-4 on orthodontic treatment-induced carious lesions[J]. Sci Rep, 2020, 10(1): 6819.
|
10 |
Kind L, Stevanovic S, Wuttig S, et al. Biomimetic remineralization of carious lesions by self-assembling peptide[J]. J Dent Res, 2017, 96(7): 790-797.
|
11 |
Chen M, Yang JJ, Li JY, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin[J]. Acta Biomater, 2014, 10(10): 4437-4446.
|
12 |
Fan ML, Zhang M, Xu HK, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro[J]. Dent Mater, 2020, 36(2): 210-220.
|
13 |
Philip N. State of the art enamel remineralization systems: the next frontier in caries management[J]. Caries Res, 2019, 53(3): 284-295.
|
14 |
Arifa MK, Ephraim R, Rajamani T. Recent advances in dental hard tissue remineralization: a review of literature[J]. Int J Clin Pediatr Dent, 2019, 12(2): 139-144.
|
15 |
Ma XL, Lin XD, Zhong TF, et al. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and Meta-analysis[J]. BMC Oral Health, 2019, 19(1): 295.
|
16 |
Gargouri W, Zmantar T, Kammoun R, et al. Coupling xylitol with remineralizing agents improves tooth protection against demineralization but reduces antibiofilm effect[J]. Microb Pathog, 2018, 123: 177-182.
|
17 |
Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial g-rowth[J]. Sci Adv, 2019, 5(8): eaaw9569.
|
18 |
Niu LN, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014, 30(1): 77-96.
|
19 |
Gulseren G, Tansik G, Garifullin R, et al. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization[J]. Macromol Biosci, 2019, 19(1): e1800080.
|
20 |
Liu Y, Zhang L, Niu LN, et al. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles[J]. J Dent, 2018, 72: 53-63.
|
21 |
Luo XJ, Yang HY, Niu LN, et al. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica[J]. Acta Biomater, 2016, 31: 378-387.
|
22 |
Yu J, Yang HY, Li K, et al. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study[J]. J Dent, 2016, 50: 21-29.
|
23 |
Xie FF, Wei XL, Li QR, et al. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion[J]. Dent Mater J, 2016, 35(1): 104-111.
|
24 |
Bacino M, Girn V, Nurrohman H, et al. Integrating the PILP-mineralization process into a restorative dental treat-ment[J]. Dent Mater, 2019, 35(1): 53-63.
|
25 |
Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020, 7(1): 54.
|
26 |
Hu Y, Zhu YJ, Zhou X, et al. Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair[J]. J Mater Chem B, 2016, 4(7): 1235-1246.
|
27 |
Sun JL, Jiao K, Song Q, et al. Intrafibrillar silicified collagen scaffold promotes in situ bone regeneration by activating the monocyte p38 signaling pathway[J]. Acta Biomater, 2018, 67: 354-365.
|
28 |
Sun JL, Jiao K, Niu LN, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration[J]. Biomaterials, 2017, 113: 203-216.
|
29 |
Niu LN, Jiao K, Ryou H, et al. Multiphase intrafibrillar mineralization of collagen[J]. Angew Chem Int Ed Engl, 2013, 52(22): 5762-5766.
|
30 |
Yao SS, Lin XF, Xu YF, et al. Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor[J]. Adv Sci (Weinh), 2019, 6(19): 1900683.
|
31 |
Song Q, Jiao K, Tonggu L, et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization[J]. Sci Adv, 2019, 5(3): eaav9075.
|
32 |
Zhang XJ, Li Y, Chen YE, et al. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate cri-tical-sized bone defects[J]. Nat Commun, 2016, 7: 10376.
|
33 |
Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799.
|
34 |
Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43): 1703795.
|
35 |
Lin SH, Yang GZ, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209.
|
36 |
Liu YS, Ou MG, Liu H, et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration[J]. Biomaterials, 2014, 35(15): 4489-4498.
|
37 |
Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35): 9415-9424.
|
38 |
Yu T, Liu Q, Jiang T, et al. Channeled β-TCP scaffolds promoted vascularization and bone augmentation in mandible of Beagle dogs[J]. Adv Funct Mater, 2016, 26: 6719-6727.
|
39 |
Nair MA, Shaik KV, Kokkiligadda A, et al. Tissue-engineered maxillofacial skeletal defect reconstruction by 3D printed beta-tricalcium phosphate scaffold tethered with growth factors and fibrin glue implanted autologous bone marrow-derived mesenchymal stem cells[J]. J Med Life, 2020, 13(3): 418-425.
|