华西口腔医学杂志 ›› 2020, Vol. 38 ›› Issue (3): 324-329.doi: 10.7518/hxkq.2020.03.017
收稿日期:
2019-05-21
修回日期:
2019-12-19
出版日期:
2020-06-01
发布日期:
2020-05-28
通讯作者:
王航
E-mail:wanghang@scu.edu.cn
作者简介:
吴湘楠,助理研究员,博士,E-mail: wuxn25@mail.sysu.edu.cn
基金资助:
Wu Xiangnan1,2, Ma Yuanyuan2, Hao Zhichao2, Wang Hang1()
Received:
2019-05-21
Revised:
2019-12-19
Online:
2020-06-01
Published:
2020-05-28
Contact:
Hang Wang
E-mail:wanghang@scu.edu.cn
Supported by:
摘要:
溶血磷脂酸(LPA)是一种结构简单的生物学磷脂,广泛存在于真核细胞组织和血浆中。作为胞外信号分子的LPA可以通过至少6种G蛋白偶联受体激活多条信号通路,产生广泛的细胞学效应,从而在组织发育、创伤愈合和肿瘤的发生发展中发挥重要作用。近年来研究表明,LPA对多种骨组织细胞亦表现出显著的生物学调控功能,对于骨组织的发育和修复重建具有重要影响,具备应用于骨组织工程的潜能。本文就LPA对骨组织细胞生物学调控功能的研究进展进行综述。
中图分类号:
吴湘楠, 马媛媛, 浩志超, 王航. 溶血磷脂酸对骨组织细胞生物学调控功能的研究进展[J]. 华西口腔医学杂志, 2020, 38(3): 324-329.
Wu Xiangnan, Ma Yuanyuan, Hao Zhichao, Wang Hang. Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells[J]. West China Journal of Stomatology, 2020, 38(3): 324-329.
[1] | Llona-Minguez S, Ghassemian A, Helleday T . Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox[J]. Prog Lipid Res, 2015,58:51-75. |
[2] | Sheng XY, Yung YC, Chen A , et al. Lysophosphatidic acid signalling in development[J]. Development, 2015,142(8):1390-1395. |
[3] | Kihara Y, Mizuno H, Chun J . Lysophospholipid receptors in drug discovery[J]. Exp Cell Res, 2015,333(2):171-177. |
[4] |
Choi JW, Herr DR, Noguchi K , et al. LPA receptors: subtypes and biological actions[J]. Annu Rev Pharmacol Toxicol, 2010,50(1):157-186.
doi: 10.1146/annurev.pharmtox.010909.105753 URL |
[5] |
Dohi T, Miyauchi K, Ohkawa R , et al. Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome[J]. Atherosclerosis, 2013,229(1):192-197.
doi: 10.1016/j.atherosclerosis.2013.03.038 URL |
[6] |
Santos-Nogueira E, López-Serrano C, Hernández J , et al. Activation of lysophosphatidic acid receptor type 1 contributes to pathophysiology of spinal cord injury[J]. J Neurosci, 2015,35(28):10224-10235.
doi: 10.1523/JNEUROSCI.4703-14.2015 URL |
[7] | Brindley DN, Lin FT, Tigyi GJ . Role of the autotaxin-lysophosphatidate axisin cancer resistance to chemotherapy and radiotherapy[J]. Biochim Biophys Acta, 2013,1831(1):74-85. |
[8] | Fukushima N, Ishii S, Tsujiuchi T , et al. Comparative analyses of lysophosphatidic acid receptor-mediated signaling[J]. Cell Mol Life Sci, 2015,72(12):2377-2394. |
[9] | Valdés-Rives SA, González-Arenas A . Autotaxin-lysophosphatidic acid: from inflammation to cancer development[J]. Mediators Inflamm, 2017,2017:9173090. |
[10] |
Mutoh T, Rivera R, Chun J . Insights into the pharmacological relevance of lysophospholipid receptors[J]. Br J Pharmacol, 2012,165(4):829-844.
doi: 10.1111/j.1476-5381.2011.01622.x URL |
[11] | Lai YJ, Lin WC, Lin FT . PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration[J]. J Biol Chem, 2007,282(33):24381-24387. |
[12] | Ishii I, Contos JJ, Fukushima N , et al. Functional comparisons of the lysophosphatidic acid receptors, LPA1/VZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG7 in neuronal cell lines using a retrovirus expression system[J]. Mol Pharmacol, 2000,58(5):895-902. |
[13] |
Lai SL, Yao WL, Tsao KC , et al. Autotaxin/Lpar3 signaling regulates Kupffer’s vesicle formation and left-right asymmetry in zebrafish[J]. Development, 2012,139(23):4439-4448.
doi: 10.1242/dev.081745 URL |
[14] |
Lee CW, Rivera R, Dubin AE , et al. LPA4/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing gs-, Gq/Gi-mediated calcium signaling and G12/13-mediated rho activation[J]. J Biol Chem, 2007,282(7):4310-4317.
doi: 10.1074/jbc.M610826200 URL |
[15] | Yanagida K, Kurikawa Y, Shimizu T , et al. Current progress in non-Edg family LPA receptor research[J]. Biochim Biophys Acta, 2013,1831(1):33-41. |
[16] | Taniguchi R, Inoue A, Sayama M , et al. Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6[J]. Nature, 2017,548(7667):356-360. |
[17] | Yanagida K, Masago K, Nakanishi H , et al. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6[J]. J Biol Chem, 2009,284(26):17731-17741. |
[18] |
Lee M, Choi S, Halldén G , et al. P2Y5 is a Gαi, Gα12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion[J]. Am J Physiol Gastrointest Liver Physiol, 2009,297(4):G641-G654.
doi: 10.1152/ajpgi.00191.2009 URL |
[19] |
Infante A, Rodríguez CI . Osteogenesis and aging: lessons from mesenchymal stem cells[J]. Stem Cell Res Ther, 2018,9(1):244.
doi: 10.1186/s13287-018-0995-x URL |
[20] |
Lee MJ, Jeon ES, Lee JS , et al. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells[J]. J Cell Biochem, 2008,104(2):499-510.
doi: 10.1002/(ISSN)1097-4644 URL |
[21] | Liu YB, Kharode Y, Bodine PV , et al. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4[J]. J Cell Biochem, 2010,109(4):794-800. |
[22] |
Mansell JP, Nowghani M, Pabbruwe M , et al. Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: requirement of albumin-bound LPA[J]. Prostagland Other Lipid Mediat, 2011,95(1/2/3/4):45-52.
doi: 10.1016/j.prostaglandins.2011.05.003 URL |
[23] | Chen Z, Luo Q, Lin C , et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation[J]. Sci Rep, 2016,6:30322. |
[24] |
Chen JH, Baydoun AR, Xu RX , et al. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis[J]. Stem Cells, 2008,26(1):135-145.
doi: 10.1634/stemcells.2007-0098 URL |
[25] | Wang XY, Fan XS, Cai L , et al. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis[J]. Apoptosis, 2015,20(3):273-284. |
[26] | Sims SM, Panupinthu N, Lapierre DM , et al. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone[J]. Biochim Biophys Acta, 2013,1831(1):109-116. |
[27] |
Lancaster S, Mansell JP . The role of lysophosphatidic acid on human osteoblast formation, maturation and the implications for bone health and disease[J]. Clin Lipidol, 2013,8(1):123-135.
doi: 10.2217/CLP.12.86 URL |
[28] |
Caverzasio J, Palmer G, Suzuki A , et al. Evidence for the involvement of two pathways in activation of extracellular signal-regulated kinase (erk) and cell proliferation by Gi and Gq protein-coupled receptors in osteoblast-like cells[J]. J Bone Miner Res, 2000,15(9):1697-1706.
doi: 10.1359/jbmr.2000.15.9.1697 URL |
[29] |
Grey A, Banovic T, Naot D , et al. Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve Gi proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases[J]. Endocrinology, 2001,142(3):1098-1106.
doi: 10.1210/endo.142.3.8011 URL |
[30] |
Grey A, Chen Q, Callon K , et al. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving Gi proteins and phosphatidylinositol-3 kinase[J]. Endocrinology, 2002,143(12):4755-4763.
doi: 10.1210/en.2002-220347 URL |
[31] | Yao SC, Zhang YN, Wang XY , et al. Pigment epithelium-derived factor (PEDF) protects osteoblastic cell line from glucocorticoid-induced apoptosis via PEDF-R[J]. Int J Mol Sci, 2016,17(5):730. |
[32] | Lee H, Goetzl EJ, An SZ . Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing[J]. Am J Physiol Cell Physiol, 2000,278(3):C612-C618. |
[33] | Masiello LM, Fotos JS, Galileo DS , et al. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells[J]. Bone, 2006,39(1):72-82. |
[34] |
Karagiosis SA, Chrisler WB, Bollinger N , et al. Lysophosphatidic acid-induced ERK activation and chemotaxis in MC3T3-E1 preosteoblasts are independent of EGF receptor transactivation[J]. J Cell Physiol, 2009,219(3):716-723.
doi: 10.1002/jcp.v219:3 URL |
[35] |
Panupinthu N, Zhao L, Possmayer F , et al. P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid[J]. J Biol Chem, 2007,282(5):3403-3412.
doi: 10.1074/jbc.M605620200 URL |
[36] |
Gidley J, Openshaw S, Pring ET , et al. Lysophosphatidic acid cooperates with 1α,25(OH)2D3 in stimulating human MG63 osteoblast maturation[J]. Prostagland Other Lipid Mediat, 2006,80(1/2):46-61.
doi: 10.1016/j.prostaglandins.2006.04.001 URL |
[37] | Mansell JP, Farrar D, Jones S , et al. Cytoskeletal reorganisation, 1α,25-dihydroxy vitamin D3 and human MG63 osteoblast maturation[J]. Prostagland Other Lipid Mediat, 2009,305(1/2):38-46. |
[38] |
Hong L, Sharp T, Khorsand B , et al. Correction: microRNA-200c represses IL-6, IL-8, and CCL-5 expression and enhances osteogenic differentiation[J]. PLoS One, 2016,11(12):e0169381.
doi: 10.1371/journal.pone.0169381 URL |
[39] | Niu X, Chen YM, Qi L , et al. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1α pathway[J]. Cytokine, 2019,113:117-127. |
[40] |
Aki Y, Kondo A, Nakamura H , et al. Lysophosphatidic acid-stimulated interleukin-6 and -8 synjournal through LPA1 receptors on human osteoblasts[J]. Arch Oral Biol, 2008,53(3):207-213.
doi: 10.1016/j.archoralbio.2007.08.006 URL |
[41] |
Yu ZL, Li DQ, Huang XY , et al. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways[J]. Int J Mol Med, 2016,37(2):468-474.
doi: 10.3892/ijmm.2016.2450 URL |
[42] | Appelman-Dijkstra NM, Papapoulos SE . Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway[J]. Nat Rev Endocrinol, 2018,14(10):605-623. |
[43] | Karagiosis SA, Karin NJ . Lysophosphatidic acid induces osteocyte dendrite outgrowth[J]. Biochem Biophys Res Commun, 2007,357(1):194-199. |
[44] |
Waters KM, Jacobs JM, Gritsenko MA , et al. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: relevance to dendrite outgrowth[J]. Bone, 2011,48(6):1328-1335.
doi: 10.1016/j.bone.2011.02.020 URL |
[45] |
Boyce BF, Li JB, Xing LP , et al. Bone remodeling and the role of TRAF3 in osteoclastic bone resorption[J]. Front Immunol, 2018,9:2263.
doi: 10.3389/fimmu.2018.02263 URL |
[46] | David M, Wannecq E, Descotes F , et al. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts[J]. PLoS One, 2010,5(3):e9741. |
[47] | David M, Machuca-Gayet I, Kikuta J , et al. Lysophosphatidic acid receptor type 1 (LPA1) plays a functional role in osteoclast differentiation and bone resorption activity[J]. J Biol Chem, 2014,289(10):6551-6564. |
[48] | Orosa B, García S, Martínez P , et al. Lysophosphatidic acid receptor inhibition as a new multipronged treatment for rheumatoid arthritis[J]. Ann Rheum Dis, 2014,73(1):298-305. |
[49] |
Lapierre DM, Tanabe N, Pereverzev A , et al. Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival[J]. J Biol Chem, 2010,285(33):25792-25801.
doi: 10.1074/jbc.M110.109322 URL |
[50] |
McMichael BK, Meyer SM, Lee BS . C-src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation[J]. J Biol Chem, 2010,285(34):26641-26651.
doi: 10.1074/jbc.M110.119909 URL |
[51] |
Mansell JP, Barbour M, Moore C , et al. The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces[J]. Biomaterials, 2010,31(2):199-206.
doi: 10.1016/j.biomaterials.2009.09.035 URL |
[52] | Bosetti M, Borrone A, Leigheb M , et al. Injectable graft substitute active on bone tissue regeneration[J]. Tissue Eng Part A, 2017,23(23/24):1413-1422. |
[53] | Binder BY, Williams PA, Silva EA , et al. Lysophosphatidic acid and sphingosine-1-phosphate: a concise review of biological function and applications for tissue engineering[J]. Tissue Eng Part B Rev, 2015,21(6):531-542. |
[1] | 戴振宁, 郑蔚晗, 利时雨. 核因子κB受体活化因子配体和肿瘤坏死因子α经炎性牙周膜干细胞外泌体促进破骨细胞分化[J]. 华西口腔医学杂志, 2022, 40(4): 377-385. |
[2] | 王若欣, 刘倩, 何峰, 张勉, 王贺林. 生长分化因子11对小鼠颞下颌关节骨关节炎髁突软骨细胞脂肪化的影响[J]. 华西口腔医学杂志, 2022, 40(1): 14-21. |
[3] | 张帅, 王江红, 田利杰, 王宝利, 张娟. 17β-雌二醇对髁突软骨细胞增殖的影响机制[J]. 华西口腔医学杂志, 2021, 39(6): 651-657. |
[4] | 石玉. 能量代谢在成骨和破骨细胞中的研究[J]. 华西口腔医学杂志, 2021, 39(5): 501-509. |
[5] | 肖勉, 胡智慧, 江恒华, 房维, 龙星. 破骨细胞分化在颞下颌关节骨关节炎发生中的作用[J]. 华西口腔医学杂志, 2021, 39(4): 398-404. |
[6] | 刘伟, 李春洁, 李龙江. 口腔癌颌骨侵犯的分子机制研究进展[J]. 华西口腔医学杂志, 2021, 39(2): 221-226. |
[7] | 巴凯, 倪端, 王新波, 魏雪琴, 李娜, 郑廉. 血管基质组分与软骨细胞共培养促进体内软骨再生[J]. 华西口腔医学杂志, 2020, 38(3): 240-244. |
[8] | 仉红,王丽娜,左美娜,董明,史东梅,徐慧君,牛卫东. 布鲁顿酪氨酸激酶对破骨细胞增殖及分化作用的实验研究[J]. 华西口腔医学杂志, 2019, 37(4): 361-365. |
[9] | 李云洁,滕彬宏,赵艳红,杨强,王连永,黄颖. 软骨组织工程用羧甲基壳聚糖/氧化海藻酸钠复合水凝胶的制备及体外评估[J]. 华西口腔医学杂志, 2019, 37(3): 253-259. |
[10] | 曹钰彬,刘畅,潘韦霖,涂缘,李春洁,华成舸. 引导骨再生屏障膜改良的研究进展[J]. 华西口腔医学杂志, 2019, 37(3): 325-329. |
[11] | 李云洁,赵艳红,杨强. 软骨细胞外基质在软骨组织工程中的研究进展[J]. 华西口腔医学杂志, 2019, 37(2): 220-223. |
[12] | 雷群,林东,黄文秀,吴东,陈江. 钙离子对人成骨细胞迁移与成骨分化的影响[J]. 华西口腔医学杂志, 2018, 36(6): 602-608. |
[13] | 丁鑫鑫, 周延民, 相星辰, 孟琳, 秦勤, 叶珊. 壳聚糖复合材料在骨组织工程中的研究进展[J]. 华西口腔医学杂志, 2018, 36(4): 441-446. |
[14] | 邵华英, 张一弓, 杨雪, 张琼月, 吴小红. 抑菌浓度米诺环素对成骨细胞增殖、分化和矿化的影响[J]. 华西口腔医学杂志, 2018, 36(2): 140-145. |
[15] | 杨胜银, 陈平, 鲍济波, 丁怡心, 邹晋阳, 谢志刚. 脱矿牙本质基质骨诱导性及对相关细胞鉴定的实验研究[J]. 华西口腔医学杂志, 2018, 36(1): 33-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||