华西口腔医学杂志 ›› 2021, Vol. 39 ›› Issue (2): 221-226.doi: 10.7518/hxkq.2021.02.015
收稿日期:
2019-07-17
修回日期:
2020-12-19
出版日期:
2021-04-01
发布日期:
2021-04-09
通讯作者:
李春洁
E-mail:liuwei-scu@qq.com;lichunjie@scu.edu.cn
作者简介:
刘伟,硕士,E-mail:基金资助:
Liu Wei(), Li Chunjie(), Li Longjiang
Received:
2019-07-17
Revised:
2020-12-19
Online:
2021-04-01
Published:
2021-04-09
Contact:
Li Chunjie
E-mail:liuwei-scu@qq.com;lichunjie@scu.edu.cn
Supported by:
摘要:
口腔癌易于发生颌骨侵犯,影响患者预后,而这一现象的分子机制尚未完全阐明。目前研究发现,口腔癌细胞通过一系列信号分子的表达直接或者间接影响破骨细胞的形成和功能,有多条信号通路参与其调控,其中核因子κB受体活化因子配体/核因子κB受体活化因子/骨保护素信号通路的调节备受关注。本文就口腔癌颌骨侵犯的分子机制研究进展进行综述。
中图分类号:
刘伟, 李春洁, 李龙江. 口腔癌颌骨侵犯的分子机制研究进展[J]. 华西口腔医学杂志, 2021, 39(2): 221-226.
Liu Wei, Li Chunjie, Li Longjiang. Advances in molecular mechanisms of bone invasion by oral cancer[J]. West China Journal of Stomatology, 2021, 39(2): 221-226.
1 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
2 | Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J]. Oral Oncol, 2009, 45(4/5): 309-316. |
3 | Laraway DC, Lakshmiah R, Lowe D, et al. Quality of life in older people with oral cancer[J]. Br J Oral Maxillofac Surg, 2012, 50(8): 715-720. |
4 | Carter RL. Patterns and mechanisms of localized bone invasion by tumors: studies with squamous carcinomas of the head and neck[J]. Crit Rev Clin Lab Sci, 1985, 22(3): 275-315. |
5 | Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J]. Nature, 2003, 423(6937): 337-342. |
6 | Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification[J]. Genes Dev, 1998, 12(9): 1260-1268. |
7 | Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology[J]. Ann N Y Acad Sci, 2008, 1143: 123-150. |
8 | Bendre M, Gaddy D, Nicholas RW, et al. Breast cancer metastasis to bone: it is not all about PTHrP[J]. Clin Orthop Relat Res, 2003, 415(): S39-S45. |
9 | Brown JM, Corey E, Lee ZD, et al. Osteoprotegerin and rank ligand expression in prostate cancer[J]. Urology, 2001, 57(4): 611-616. |
10 | Sezer O, Heider U, Zavrski I, et al. RANK ligand and osteoprotegerin in myeloma bone disease[J]. Blood, 2003, 101(6): 2094-2098. |
11 | Zhang XY, Junior CR, Liu M, et al. Oral squamous carcinoma cells secrete RANKL directly supporting osteoly-tic bone loss[J]. Oral Oncol, 2013, 49(2): 119-128. |
12 | Kawamata H, Nakashiro K, Uchida D, et al. Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines[J]. Int J Cancer, 1997, 70(1): 120-127. |
13 | Tada T, Jimi E, Okamoto M, et al. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts[J]. Int J Cancer, 2005, 116(2): 253-262. |
14 | Ishikuro M, Sakamoto K, Kayamori K, et al. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas[J]. Bone, 2008, 43(3): 621-627. |
15 | Tohyama R, Kayamori K, Sato K, et al. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL[J]. J Oral Pathol Med, 2016, 45(5): 356-364. |
16 | Sato K, Lee JW, Sakamoto K, et al. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer[J]. Am J Pathol, 2013, 182(5): 1890-1899. |
17 | Quan JJ, Zhou CX, Johnson NW, et al. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma[J]. Pathology, 2012, 44(3): 221-227. |
18 | Elmusrati AA, Pilborough AE, Khurram SA, et al. Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma[J]. Br J Cancer, 2017, 117(6): 867-875. |
19 | Shibahara T, Nomura T, Cui NH, et al. A study of osteoclast-related cytokines in mandibular invasion by squamous cell carcinoma[J]. Int J Oral Maxillofac Surg, 2005, 34(7): 789-793. |
20 | Nomura T, Shibahara T, Katakura A, et al. Establishment of a murine model of bone invasion by oral squamous cell carcinoma[J]. Oral Oncol, 2007, 43(3): 257-262. |
21 | Deyama Y, Tei K, Yoshimura Y, et al. Oral squamous cell carcinomas stimulate osteoclast differentiation[J]. Oncol Rep, 2008, 20(3): 663-668. |
22 | Tada T, Shin M, Fukushima H, et al. Oral squamous cell carcinoma cells modulate osteoclast function by RANKL-dependent and -independent mechanisms[J]. Cancer Lett, 2009, 274(1): 126-131. |
23 | Takayama Y, Mori T, Nomura T, et al. Parathyroid-rela-ted protein plays a critical role in bone invasion by oral squamous cell carcinoma[J]. Int J Oncol, 2010, 36(6): 1387-1394. |
24 | Kayamori K, Sakamoto K, Nakashima T, et al. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells[J]. Am J Pathol, 2010,176(2): 968-980. |
25 | Shimo T, Kubota S, Yoshioka N, et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer[J]. J Bone Miner Res, 2006, 21(7): 1045-1059. |
26 | Shimo T, Kubota S, Goda T, et al. Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma[J]. Anticancer Res, 2008, 28(4C): 2343-2348. |
27 | Cui NH, Nomura T, Takano N, et al. Osteoclast-related cytokines from biopsy specimens predict mandibular invasion by oral squamous cell carcinoma[J]. Exp Ther Med, 2010, 1(5): 755-760. |
28 | van Cann EM, Slootweg PJ, de Wilde PC, et al. The prediction of mandibular invasion by squamous cell carcinomas with the expression of osteoclast-related cytokines in biopsy specimens[J]. Int J Oral Maxillofac Surg, 2009, 38(3): 279-284. |
29 | Yuvaraj S, Griffin AC, Sundaram K, et al. A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells[J]. Mol Cancer Res, 2009, 7(8): 1399-1407. |
30 | Sambandam Y, Sundaram K, Liu A, et al. CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment[J]. Oncogene, 2013, 32(1): 97-105. |
31 | Oue E, Lee JW, Sakamoto K, et al. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction[J]. Biochem Biophys Res Commun, 2012, 424(3): 456-461. |
32 | Quan JJ, Morrison NA, Johnson NW, et al. MCP-1 as a potential target to inhibit the bone invasion by oral squamous cell carcinoma[J]. J Cell Biochem, 2014, 115(10): 1787-1798. |
33 | Luo SY, Zhou CX, Zhang JM, et al. Mutant monocyte chemoattractant protein-1 protein (7ND) inhibits osteoclast differentiation and reduces oral squamous carcinoma cell bone invasion[J]. Oncol Lett, 2018, 15(5): 7760-7768. |
34 | Fiorino C, Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis[J]. Bone, 2016, 86: 106-118. |
35 | Quan JJ, Du Q, Hou YL, et al. Utilization of E-cadherin by monocytes from tumour cells plays key roles in the progression of bone invasion by oral squamous cell carcinoma[J]. Oncol Rep, 2017, 38(2): 850-858. |
36 | Jimi E, Kokabu S, Matsubara T, et al. NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma[J]. Oral Sci Int, 2016, 13(1): 1-6. |
37 | Furuta H, Osawa K, Shin M, et al. Selective inhibition of NF-κB suppresses bone invasion by oral squamous cell carcinoma in vivo[J]. Int J Cancer, 2012, 131(5): E625-E635. |
38 | Tada Y, Kokabu S, Sugiyama G, et al. The novel IκB kinase β inhibitor IMD-0560 prevents bone invasion by oral squamous cell carcinoma[J]. Oncotarget, 2014, 5(23): 12317-12330. |
39 | Nakamura R, Kayamori K, Oue E, et al. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma[J]. Biochem Biophys Res Commun, 2015, 458(4): 777-782. |
40 | Honami T, Shimo T, Okui T, et al. Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction[J]. Oral Oncol, 2012, 48(1): 49-55. |
41 | Shimo T, Matsumoto K, Takabatake K, et al. The role of sonic hedgehog signaling in osteoclastogenesis and jaw bone destruction[J]. PLoS One, 2016, 11(3): e0151731. |
42 | Cannonier SA, Gonzales CB, Ely K, et al. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma[J]. Oncotarget, 2016, 7(46): 76062-76075. |
43 | Hwang YS, Ahn SY, Moon S, et al. Insulin-like growth factor-Ⅱ mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma[J]. Arch Oral Biol, 2016, 69: 25-32. |
44 | Okui T, Shimo T, Fukazawa T, et al. Antitumor effect of temsirolimus against oral squamous cell carcinoma associated with bone destruction[J]. Mol Cancer Ther, 2010, 9(11): 2960-2969. |
45 | Park J, Kim HJ, Kim KR, et al. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma[J]. Oncotarget, 2017, 8(6): 9079-9092. |
46 | Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities[J]. Nat Rev Cancer, 2002, 2(8): 584-593. |
47 | Papadimitrakopoulou VA, Brown EN, Liu DD, et al. The prognostic role of loss of insulin-like growth factor-binding protein-3 expression in head and neck carcinogenesis[J]. Cancer Lett, 2006, 239(1): 136-143. |
48 | Goda T, Shimo T, Yoshihama Y, et al. Bone destruction by invading oral squamous carcinoma cells mediated by the transforming growth factor-beta signalling pathway[J]. Anticancer Res, 2010, 30(7): 2615-2623. |
[1] | 戴振宁, 郑蔚晗, 利时雨. 核因子κB受体活化因子配体和肿瘤坏死因子α经炎性牙周膜干细胞外泌体促进破骨细胞分化[J]. 华西口腔医学杂志, 2022, 40(4): 377-385. |
[2] | 卢倩, 郭柳媚, 毕小琴. 口腔癌患者术后吞咽障碍危险因素的系统评价[J]. 华西口腔医学杂志, 2022, 40(3): 328-334. |
[3] | 李若焓, 黄颖昭, 廖乃麟, 吴沉洲, 李一. 口腔癌细胞通过传递性内质网应激影响胰岛β细胞功能的初探[J]. 华西口腔医学杂志, 2022, 40(1): 22-31. |
[4] | 石玉. 能量代谢在成骨和破骨细胞中的研究[J]. 华西口腔医学杂志, 2021, 39(5): 501-509. |
[5] | 肖勉, 胡智慧, 江恒华, 房维, 龙星. 破骨细胞分化在颞下颌关节骨关节炎发生中的作用[J]. 华西口腔医学杂志, 2021, 39(4): 398-404. |
[6] | 贾美娥, 李志勇, 徐凯, 王怡衡, 于菲, 何祥一. 口腔癌细胞Cal27外泌体对人正常牙龈成纤维细胞的生物学作用[J]. 华西口腔医学杂志, 2021, 39(3): 313-319. |
[7] | 张东升, 郑家伟, 张陈平, 蔡志刚, 李龙江, 廖贵清, 尚政军, 孙沫逸, 韩正学, 尚伟, 孟箭, 龚忠诚, 黄圣运. 口腔癌合并全身系统性疾病患者的多学科协作诊疗模式专家共识[J]. 华西口腔医学杂志, 2020, 38(6): 603-615. |
[8] | 廖敏, 程磊, 周学东, 任彪. 白色念珠菌对口腔黏膜疾病恶性转化作用的研究进展[J]. 华西口腔医学杂志, 2020, 38(4): 431-437. |
[9] | 吴湘楠, 马媛媛, 浩志超, 王航. 溶血磷脂酸对骨组织细胞生物学调控功能的研究进展[J]. 华西口腔医学杂志, 2020, 38(3): 324-329. |
[10] | 程俊鑫, 白贺天, 常治楠, 李敬, 陈谦明. 口腔黏膜癌前病变和口腔癌动物模型的研究进展[J]. 华西口腔医学杂志, 2020, 38(2): 198-204. |
[11] | 许智,吕逢源,姜二辉,赵小平,尚政军. 槟榔与细胞内活性氧及自噬的关系[J]. 华西口腔医学杂志, 2020, 38(1): 80-85. |
[12] | 仉红,王丽娜,左美娜,董明,史东梅,徐慧君,牛卫东. 布鲁顿酪氨酸激酶对破骨细胞增殖及分化作用的实验研究[J]. 华西口腔医学杂志, 2019, 37(4): 361-365. |
[13] | 赵军方,查治安,谢卫红,王海斌,李新明,孙强,孙明磊. 长链非编码RNA H19对口腔癌细胞的迁移和侵袭的影响以及分子机制[J]. 华西口腔医学杂志, 2019, 37(4): 378-383. |
[14] | 秦帅华, 李新明, 李文鹿. 口腔癌相关生存质量量表的系统性回顾研究[J]. 华西口腔医学杂志, 2018, 36(4): 410-420. |
[15] | 秦帅华, 李新明, 李文鹿. 口腔癌患者生存质量的影响因素及医学应对方式分析[J]. 华西口腔医学杂志, 2018, 36(3): 271-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||