[1] |
Venkatesan J, Kim SK.Chitosan composites for bone tissue engineering—an overview[J]. Mar Drugs, 2010, 8(8): 2252-2266.
|
[2] |
Deepthi S, Venkatesan J, Kim SK, et al.An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1338-1353.
|
[3] |
Pighinelli L, Kucharska M.Chitosan-hydroxyapatite com-posites[J]. Carbohydr Polym, 2013, 93(1): 256-262.
|
[4] |
Dhivya S, Saravanan S, Sastry TP, et al.Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo[J]. J Nanobiotechnology, 2015, 13: 40.
|
[5] |
Ai J, Rezaei-Tavirani M, Biazar E, et al.Mechanical pro-perties of chitosan-starch composite filled hydroxyapatite micro-and nanopowders[J]. J Nanomater, 2011, 2011(1): 99-110.
|
[6] |
Tylman M, Mucha M.Chitosan scaffolds with nanosilver layer for bone implantation obtained by electrolytic method[J]. Mater Sci Technol, 2014, 30(5): 582-586.
|
[7] |
Chen Y, Zhang F, Fu Q, et al.In vitro proliferation and osteo-genic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel[J]. J Biomater Appl, 2016, 31(3): 317-327.
|
[8] |
Gao C, Cai Y, Kong X, et al.Development and characteri-zation of injectable chitosan-based hydrogels containing dexamethasone/rhBMP-2 loaded hydroxyapatite nanoparticles[J]. Mater Lett, 2013, 93(1): 312-315.
|
[9] |
Beşkardeş IG, Demirtaş TT, Durukan MD, et al.Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds[J]. J Tissue Eng Regen Med, 2015, 9(11): 1233-1246.
|
[10] |
Beşkardeş IG, Hayden RS, Glettig DL, et al.Bone tissue engineering with scaffold-supported perfusion co-cultures of human stem cell-derived osteoblasts and cell line-derived osteoclasts[J]. Process Biochem, 2017, 59: 303-311.
|
[11] |
Li B, Wang L, Hao Y, et al.UV-Crosslinkable and injec-table chitosan/hydroxyapatite hybrid hydrogel for critical-size calvarial defect repair in vivo[J]. J Nanotechnol Eng Med, 2015, 6(4). DOI: 10.1115/1.4032902.
|
[12] |
Sa Y, Wang M, Deng HB, et al.Beneficial effects of bio-mimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan-glycerophosphate hydrogel on the per-formance of injectable polymethylmethacrylate[J]. RSC Adv, 2015, 5(110): 91082-91092.
|
[13] |
Wang M, Feng X, Wang T, et al.Synthesis and characteri-zation of an injectable and self-curing polymethylmetha-crylate cement functionalized with biomimetic chitosan-polyvinyl alcohol/nano-sized hydroxyapatite/silver hydrogel[J]. Rsc Adv, 2016, 6(65): 60609-60619.
|
[14] |
Nguyen TP, Doan BHP, Dang DV, et al.Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration[J]. Adv Nat Sci: Nanosci Nanotechnol, 2014, 5(1): 015012.
|
[15] |
Huang Z, Feng Q, Yu B, et al.Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite[J]. Mater Sci Eng C, 2011, 31(3): 683-687.
|
[16] |
Wang LM, Stegemann JP.Thermogelling chitosan and colla-gen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering[J]. Biomaterials, 2010, 31(14): 3976-3985.
|
[17] |
Wang LM, Stegemann JP.Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration[J]. Acta Biomater, 2011, 7(6): 2410-2417.
|
[18] |
Moreira CD, Carvalho SM, Mansur HS, et al.Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 1207-1216.
|
[19] |
Arakawa C, Ng R, Tan S, et al.Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering[J]. J Tissue Eng Regen Med, 2017, 11(1): 164-174.
|
[20] |
Cui J, Liang J, Wen Y, et al.In vitro and in vivo evaluation of chitosan/β-glycerol phosphate composite membrane for guided bone regeneration[J]. J Biomed Mater Res A, 2014, 102(9): 2911-2917.
|
[21] |
Huang Z, Yu B, Feng QL, et al.Modification of an injectable chitosan scaffold by blending with NaHCO3 to improve cytocompatibility[J]. PolymPolym Compos, 2011, 19(9): 781-787.
|
[22] |
Lin YJ, Hsu FC, Chou CW, et al.Poly(acrylic acid)-chitosan-silica hydrogel carrying platelet gel for bone defect repair[J]. J Mater Chem B, 2014, 2(47): 8329-8337.
|
[23] |
Zazakowny K, Lewandowska-Łańcucka J, Mastalska-Popław-ska J, et al. Biopolymeric hydrogels-nanostructured TiO2, hybrid materials as potential injectable scaffolds for bone regeneration[J]. Colloids Surf B Biointerfaces, 2016, 148: 607-614.
|
[24] |
Chen Y, Zhou Y, Yang S, et al.Novel bone substitute com-posed of chitosan and strontium-doped α-calcium sulfate hemihydrate: fabrication, characterisation and evaluation of biocompatibility[J]. Mater Sci Eng C Mater Biol Appl, 2016, 66: 84-91.
|
[25] |
Tian A, Zhai JJ, Peng Y, et al.Osteoblast response to tita-nium surfaces coated with strontium ranelate-loaded chitosan film[J]. Int J Oral Maxillofac Implants, 2014, 29(6): 1446-1453.
|
[26] |
Douglas TEL, Pilarek M, Kalaszczyńska I, et al.Enrichment of chitosan hydrogels with perfluorodecalin promotes gela-tion and stem cell vitality[J]. Mater Lett, 2014, 128(128): 79-84.
|
[27] |
Bush JR, Liang H, Dickinson M, et al.Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration[J]. Polym Adv Technol, 2016, 27(8): 1050-1055.
|
[28] |
Luca L, Rougemont AL, Walpoth BH, et al.Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect[J]. J Biomed Mater Res A, 2015, 96(1): 66-74.
|
[29] |
Ran J, Hu J, Sun G, et al.A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range[J]. Int J Biol Macromol, 2016, 93(Pt A): 87-97.
|
[30] |
Abd-khorsand S, Saber-samandari S, Saber-samandari S. Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility[J]. Int J Biol Macromol, 2017, 101: 51-58.
|
[31] |
Balagangadharan K, Dhivya S, Selvamurugan N.Chitosan based nanofibers in bone tissue engineering[J]. Int J Biol Macromol, 2016, 104(Pt B): 1372-1382.
|
[32] |
Saravanan S, Leena RS, Selvamurugan N.Chitosan based biocomposite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1354-1365.
|
[33] |
Arslan-Yildiz AH, El Assal R, Chen P, et al.Towards arti-ficial tissue models: past, present, and future of 3D bioprinting[J]. Biofabrication, 2016, 8(1): 014103.
|
[34] |
Ozbolat IT.Bioprinting scale-up tissue and organ constructs for transplantation[J]. Trends Biotechnol, 2015, 33(7): 395-400.
|
[35] |
Liu C, Liu Y, Li S, et al.Bioprinted chitosan and hydroxya-patite micro-channels structures scaffold for vascularization of bone regeneration[J]. J Biomater Tissue Eng, 2017, 7(1): 28-34.
|
[36] |
Demirtaş TT, Irmak G, Gümüşderelioğlu M.A bioprintable form of chitosan hydrogel for bone tissue engineering[J]. Biofabrication, 2017, 9(3): 035003.
|
[37] |
Huang J, Fu H, Wang ZY, et al.BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting[J]. Rsc Advances, 2016, 6(110): 108423-108430.
|
[38] |
Yang Y, Yang SB, Wang YG, et al.Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteo-conductive composite scaffold functionalized with quater-nized chitosan[J]. Acta Biomater, 2016, 46: 112-128.
|
[39] |
Akkineni AR, Ahlfeld T, Lode A, et al.A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs[J]. Biofabrication, 2016, 8(4): 045001.
|
[40] |
Malda J, Visser J, Melchels FP, et al.25th anniversary article: engineering hydrogels for biofabrication[J]. Adv Mater, 2013, 25(36): 5011-5028.
|
[41] |
Perez RA, Kim HW.Core-shell designed scaffolds for drug delivery and tissue engineering[J]. Acta Biomater, 2015, 21: 2-19.
|
[42] |
Venkatesan J, Anil S, Kim SK, et al.Chitosan as a vehicle for growth factor delivery: various preparations and their applications in bone tissue regeneration[J]. Int J Biol Macro-mol, 2017, 104(Pt B): 1383-1397.
|
[43] |
Ji YH, Wang MB, Liu WQ, et al.Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration[J]. J Biomed Mater Res A, 2017, 105(6): 1593-1606.
|
[44] |
Chen Y, Liu X, Liu R, et al.Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo[J]. Theranostics, 2017, 7(5): 1072-1087.
|
[45] |
Mi L, Liu HQ, Gao Y, et al.Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration[J]. Int J Biol Macromol, 2017, 101: 341-347.
|
[46] |
Deepthi S, Venkatesan J, Kim SK, et al.An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1338-1353.
|
[47] |
Saravanan S, Leena RS, Selvamurugan N.Chitosan based biocomposite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93(Pt B): 1354-1365.
|