[1] |
Abrahamsson AK, Kristensen M, Arvidsson LZ , et al. Frequency of temporomandibular joint osteoarthritis and related symptoms in a hand osteoarthritis cohort[J]. Osteoarthr Cartil, 2017,25(5):654-657.
doi: 10.1016/j.joca.2016.12.028
URL
|
[2] |
Nitzan DW, Svidovsky J, Zini A , et al. Effect of arthrocentesis on symptomatic osteoarthritis of the temporomandibular joint and analysis of the effect of preoperative clinical and radiologic features[J]. J Oral Maxillofac Surg, 2017,75(2):260-267.
doi: 10.1016/j.joms.2016.08.017
URL
|
[3] |
Zhou YG, Chyu J, Zumwalt M . Recent progress of fabrication of cell scaffold by electrospinning technique for articular cartilage tissue engineering[J]. Int J Biomater, 2018: 1953636.
|
[4] |
Xie XP, Zhang Q, Zhou TF , et al. The review of nanomaterials inducing the differentiation of stem cells into chondrocyte phenotypes in cartilage tissue engineering[J]. Curr Stem Cell Res Ther, 2018,13(7):600-607.
doi: 10.2174/1574888X13666180511164509
URL
|
[5] |
Gurer B, Cabuk S, Karakus O , et al. In vivo cartilage tissue engineering[J]. J Orthop Surg Res, 2018,13(1):107.
doi: 10.1186/s13018-018-0823-0
|
[6] |
Jiang XF, Liu JT, Liu Q , et al. Correction: therapy for cartilage defects: functional ectopic cartilage constructed by cartilage-simulating collagen, chondroitin sulfate and hyaluronic acid (CCH) hybrid hydrogel with allogeneic chondrocytes[J]. Biomater Sci, 2018,6(6):1616-1626.
doi: 10.1039/C8BM00354H
URL
|
[7] |
Qi C, Liu J, Jin Y , et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage[J]. Biomaterials, 2018,163:89-104.
doi: 10.1016/j.biomaterials.2018.02.016
URL
|
[8] |
Radhakrishnan J, Subramanian A, Sethuraman S . Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: a biphasic hydrogel for hyaline cartilage regeneration[J]. Carbohydr Polym, 2017,175:63-74.
doi: 10.1016/j.carbpol.2017.07.063
URL
|
[9] |
Zhou TF, Li XL, Li G , et al. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair[J]. Sci Rep, 2017,7(1):10553.
doi: 10.1038/s41598-017-11322-w
URL
pmid: 28874815
|
[10] |
Chen WL, Li CH, Peng M , et al. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration[J]. Cell Tissue Bank, 2018,19(1):35-46.
doi: 10.1007/s10561-017-9649-y
URL
|
[11] |
Chen F, Ni YZ, Liu B , et al. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering[J]. Carbohydr Polym, 2017,166:31-44.
doi: 10.1016/j.carbpol.2017.02.059
URL
|
[12] |
Treenate P, Monvisade P . In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug[J]. Int J Biol Macromol, 2017,99:71-78.
doi: 10.1016/j.ijbiomac.2017.02.061
URL
|
[13] |
Wang YY, Peng WZ, Liu X , et al. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound[J]. Acta Biomater, 2014,10(6):2518-2528.
doi: 10.1016/j.actbio.2013.12.052
URL
|
[14] |
Rassu G, Salis A, Porcu EP , et al. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases[J]. Carbohydr Polym, 2016,136:1338-1347.
doi: 10.1016/j.carbpol.2015.10.048
URL
|
[15] |
Bu Y, Xu HX, Li X , et al. A conductive sodium alginate and carboxymethyl[J]. RSC Adv, 2018,8:10806-10817.
doi: 10.1039/C8RA01059E
URL
|
[16] |
Li Y, Cao J, Han S , et al. ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis[J]. Artif Cells Nanomed Biotechnol, 2018,46(Suppl 2):152-160.
doi: 10.1080/21691401.2018.1452752
URL
|
[17] |
Naghizadeh Z, Karkhaneh A, Khojasteh A . Simultaneous release of melatonin and methylprednisolone from an injectable in situ self-crosslinked hydrogel/microparticle system for cartilage tissue engineering[J]. J Biomed Mater Res A, 2018,106(7):1932-1940.
doi: 10.1002/jbm.a.v106.7
URL
|
[18] |
Boyer C, Figueiredo L, Pace R , et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering[J]. Acta Biomater, 2018,65:112-122.
doi: 10.1016/j.actbio.2017.11.027
URL
|
[19] |
Chen F, Yu SR, Liu B , et al. An injectable enzymatically crosslinked carboxymethylated Pullulan/Chondroitin sulfate hydrogel for cartilage tissue engineering[J]. Sci Rep, 2016,6:20014.
|
[20] |
Comblain F, Rocasalbas G, Gauthier S , et al. Chitosan: a promising polymer for cartilage repair and viscosupplementation[J]. Biomed Mater Eng, 2017,28(s1):209-215.
doi: 10.3233/BME-171643
URL
pmid: 28372297
|
[21] |
Muzzarelli RA, El Mehtedi M, Bottegoni C , et al. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone[J]. Mar Drugs, 2015,13(12):7314-7338.
doi: 10.3390/md13127068
URL
|
[22] |
Meng QY, Man ZT, Dai LH , et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration[J]. Sci Rep, 2015,5:17802.
|
[23] |
Zhao M, Chen Z, Liu K , et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015,16(11):914-923.
doi: 10.1631/jzus.B1500036
URL
|
[24] |
García-López J, Garciadiego-Cázares D, Melgarejo-Ramírez Y , et al. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel[J]. Histol Histopathol, 2015,30(12):1477-1485.
doi: 10.14670/HH-11-642
pmid: 26119536
|
[25] |
莫湘涛, 邓力, 李秀群 , 等. 软骨细胞-海藻酸钠水凝胶-SIS复合体修复全层关节软骨缺损的实验研究[J]. 中国修复重建外科杂志, 2009,23(8):974-979.
|
|
Mo XT, Deng L, Li XQ , et al. Experimental study of repairing full-thickness articular cartilage defect with chondrocyte-sodium alginate hydrogel-SIS complex[J]. Chin J Reparat Reconstruct Surg, 2009,23(8):974-979.
|
[26] |
Miralles G, Baudoin R, Dumas D , et al. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage[J]. J Biomed Mater Res, 2001,57(2):268-278.
doi: 10.1002/(ISSN)1097-4636
URL
|
[27] |
Pelletier S, Hubert P, Payan E , et al. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties[J]. J Biomed Mater Res, 2001,54(1):102-108.
doi: 10.1002/(ISSN)1097-4636
URL
|
[28] |
Yu W, Liu Y, Sheng N , et al. A soft tissue adhesive based on aldehyde-sodium alginate[J]. Front Mater Sci, 2017,11(3):215-222.
|
[29] |
Wu Y, Yuan L, Sheng NA , et al. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction[J]. Front Mater Sci, 2017,11(3):215-222.
|
[30] |
Sadlik B, Jaroslawski G, Puszkarz M , et al. Cartilage repair in the knee using umbilical cord wharton’s jelly-derived mesenchymal stem cells embedded onto collagen scaffolding and implanted under dry arthroscopy[J]. Arthrosc Tech, 2018,7(1):e57-e63.
doi: 10.1016/j.eats.2017.08.055
URL
|
[31] |
Desancé M, Contentin R, Bertoni L , et al. Chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy[J]. Int J Mol Sci, 2018, 19(2). pii: E537.
doi: 10.3390/ijms19020537
URL
|