华西口腔医学杂志 ›› 2022, Vol. 40 ›› Issue (5): 566-575.doi: 10.7518/hxkq.2022.05.010
• 临床研究 • 上一篇
龚佳明1,2(), 张启航1, 苟萍1, 王辉1, 余佳颖1, 余占海1(
)
收稿日期:
2022-03-28
修回日期:
2022-08-03
出版日期:
2022-10-01
发布日期:
2022-10-17
通讯作者:
余占海
E-mail:gongjm19@lzu.edu.cn;yuzhanhai@lzu.edu.cn
作者简介:
龚佳明,医师,硕士,E-mail:基金资助:
Gong Jiaming1,2(), Zhang Qihang1, Gou Ping1, Wang Hui1, Yu Jiaying1, Yu Zhanhai1(
)
Received:
2022-03-28
Revised:
2022-08-03
Online:
2022-10-01
Published:
2022-10-17
Contact:
Yu Zhanhai
E-mail:gongjm19@lzu.edu.cn;yuzhanhai@lzu.edu.cn
Supported by:
摘要:
目的 通过Meta分析方法系统评估在牙槽嵴缺损需要骨增量时使用自体牙本质(ATD)移植的有效性及安全性。 方法 电子检索2010年1月1日—2022年3月19日PubMed、Embase、Web of Science、Cochrane Library、CNKI、万方数据库有关牙槽嵴增量使用ATD的临床研究。使用Cochrane Tool评估随机对照试验的偏倚风险,使用Newcastle-Ottawa Scale评估队列研究。RevMan 5.4对数据进行合并分析。 结果 共纳入10项研究,其中5项研究对照组采用自体骨,另5项研究对照组采用脱蛋白牛骨基质(DBBM)。Meta分析结果显示,牙槽嵴增量术后6个月,ATD较自体骨获得更多水平向牙槽嵴增量[MD=2.01,95%可信区间(CI)(1.09,2.93),P<0.000 1],但在垂直向牙槽嵴增量上效果相似[MD=-0.06,95%CI(-0.21,0.08),P=0.39]。ATD与自体骨或DBBM相比呈现更少的材料吸收[MD=-0.59,95%CI(-1.03,-0.15),P=0.008;MD=-0.63,95%CI(-1.18,-0.07),P=0.03],而在种植体稳定系数和术后并发症上均无显著差异[MD=-0.76,95%CI(-3.04,1.52),P=0.51;RR=1.01,95%CI(0.33,3.12),P=0.98]。 结论 有限证据表明,在牙槽嵴缺损中移植ATD可取得与移植自体骨或DBBM类似或更佳的骨增量效果且材料吸收更少,可作为扩增牙槽嵴的植骨材料。但仍需要进行更大样本、更高质量、更长随访时间的临床试验评估ATD在牙槽嵴增量中的疗效。
中图分类号:
龚佳明, 张启航, 苟萍, 王辉, 余佳颖, 余占海. 自体牙本质用于牙槽嵴增量的Meta分析[J]. 华西口腔医学杂志, 2022, 40(5): 566-575.
Gong Jiaming, Zhang Qihang, Gou Ping, Wang Hui, Yu Jiaying, Yu Zhanhai. Meta-analysis of application of autogenous dentin for alveolar ridge augmentation[J]. West China Journal of Stomatology, 2022, 40(5): 566-575.
表 1
纳入研究的基本特征
作者/年份 | 研究设计 | 患者/种植体 | 移植骨来源 | 手术程序 | 随访时间 | 结局指标 |
---|---|---|---|---|---|---|
涉及水平向牙槽嵴骨增量 | ||||||
Korsch 2021[ | CS | 28/38 | 松动牙或第三磨牙 | 自体牙预备成1~1.5 mm牙本质壳后骨钉固定,间隙内覆盖ATD颗粒,同期植入种植体 | 5月 | ⑤⑥ |
31/41 | 下颌磨牙后区/外斜线 | 自体骨预备成骨块后骨钉固定,间隙内充填自体骨颗粒,同期植入种植体 | ||||
Schwarz 2018[ | CS | 15/15 | 第三磨牙 | 自体牙预备成牙本质块后骨钉固定,术后26周植入种植体 | 26周 | ①②⑥ |
15/15 | 磨牙后区 | 自体骨预备成骨块后骨钉固定,术后26周植入种植体 | ||||
Schwarz 2019[ | CS* | 13/13 | 第三磨牙 | 自体牙预备成牙本质块后骨钉固定,术后26周植入种植体 | 26周 | ①⑥ |
10/10 | 磨牙后区 | 自体骨预备成骨块后骨钉固定,术后26周植入种植体 | ||||
潘凌峰 2020[ | RCT | 42/- | 第三磨牙 | ATD粉碎成0.5~1 mm颗粒后脱矿并混合PRP后充填,覆盖Bio-Gide,同期植入种植体 | 12月 | ①⑥ |
42/- | 异种骨 | Bio-Oss充填,覆盖Bio-Gide,同期植入种植体 | ||||
林继超 2019[ | CS | 5/11 | 松动牙或阻生齿 | ATD粉碎成<1 mm颗粒后脱矿充填,同期植入种植体 | (11.86±1.96)月 | ②⑥ |
5/10 | 异种骨 | Bio-Oss充填,同期植入种植体 | ||||
涉及垂直向牙槽嵴骨增量 | ||||||
Pang 2017[ | RCT | 15/21 | 无法保留牙齿 | ATD粉碎成300~800 μm颗粒后脱矿充填,术后6个月植入种植体 | 6月 | ③⑤⑥ |
12/12 | 异种骨 | Bio-Oss充填,术后6个月植入种植体 | ||||
Li 2018[ | RCT | 19/23 | 松动牙 | ATD粉碎成0.5~1 mm颗粒后脱矿并混合PRF充填,覆盖Bio-Gide,同期植入种植体 | 18月 | ⑤⑥ |
19/22 | 异种骨 | Bio-Oss混合PRF充填,覆盖Bio-Gide,同期植入种植体 | ||||
孙娟斌 2016[ | RCT | 21/- | 松动牙或阻生齿 | ATD粉碎成300~1 200 μm颗粒后脱矿充填,覆盖Bio-Gide | 12月 | ③⑥ |
21/- | 异种骨 | Bio-Oss充填,覆盖Bio-Gide | ||||
涉及水平和垂直向牙槽嵴骨增量 | ||||||
Schwarz 2022[ | CS | 14/15 | 第三磨牙 | 自体牙预备成牙本质块后骨钉固定,术后26周植入种植体 | 26周 | ②③④⑥ |
14/17 | 外斜线 | 自体骨预备成骨块后骨钉固定,术后26周植入种植体 | ||||
Xiao 2019[ | CS | 7/10 | 第三磨牙 | 自体牙预备成<2 mm牙本质壳后骨钉固定,间隙内充填Bio-Oss和1 mm CGF膜,覆盖Bio-Gide,术后6个月植入种植体 | 6月 | ②③④⑥ |
6/11 | 外斜线 | 自体骨预备成<2 mm骨壳后骨钉固定,间隙内充填Bio-Oss和1 mm CGF膜,覆盖Bio-Gide,术后6个月植入种植体 | ||||
1 | Masaki C, Nakamoto T, Mukaibo T, et al. Strategies for alveolar ridge reconstruction and preservation for implant therapy[J]. J Prosthodont Res, 2015, 59(4): 220-228. |
2 | Chavda S, Levin L. Human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials: a systematic review[J]. J Oral Implantol, 2018, 44(1): 74-84. |
3 | Von Arx T, Hardt N, Wallkamm B. The TIME technique: a new method for localized alveolar ridge augmentation prior to placement of dental implants[J]. Int J Oral Maxillofac Implants, 1996, 11(3): 387-394. |
4 | Pérez-González F, Molinero-Mourelle P, Sánchez-Labrador L, et al. Assessment of clinical outcomes and histomorphometric findings in alveolar ridge augmentation procedures with allogeneic bone block grafts: a systematic review and meta-analysis[J]. Med Oral Patol Oral Cir Bucal, 2020, 25(2): e291-e298. |
5 | Araújo M, Linder E, Lindhe J. Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog[J]. Clin Oral Implants Res, 2009, 20(1): 1-6. |
6 | Zhao R, Yang R, Cooper PR, et al. Bone grafts and substitutes in dentistry: a review of current trends and developments[J]. Molecules, 2021, 26(10): 3007. |
7 | Nampo T, Watahiki J, Enomoto A, et al. A new method for alveolar bone repair using extracted teeth for the graft material[J]. J Periodontol, 2010, 81(9): 1264-1272. |
8 | Kim YK, Kim SG, Oh JS, et al. Analysis of the inorga-nic component of autogenous tooth bone graft material[J]. J Nanosci Nanotechnol, 2011, 11(8): 7442-7445. |
9 | Kim YK, Kim SG, Byeon JH, et al. Development of a novel bone grafting material using autogenous teeth[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 109(4): 496-503. |
10 | Kim YK, Kim SG, Yun PY, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials[J]. Oral Surg Oral Med Oral Pathol Oral Ra-diol, 2014, 117(1): e39-e45. |
11 | Kim YK, Lee J, Kim KW, et al. Analysis of organic components and osteoinductivity in autogenous tooth bone graft material[J]. Maxillofac Plast Reconstruct Surg, 2013, 35(6): 353-359. |
12 | Kim YK, Lee J, Yun JY, et al. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study[J]. J Periodontal Implant Sci, 2014, 44(5): 216-221. |
13 | Schwarz F, Golubovic V, Becker K, et al. Extracted tooth roots used for lateral alveolar ridge augmentation: a proof-of-concept study[J]. J Clin Periodontol, 2016, 43(4): 345-353. |
14 | Schwarz F, Mihatovic I, Golubovic V, et al. Dentointegration of a titanium implant: a case report[J]. Oral Maxillofac Surg, 2013, 17(3): 235-241. |
15 | Kim YK, Kim SG, Kim KW, et al. Extraction socket preservation and reconstruction using autogenous tooth bone graft: case report[J]. Maxillofac Plast Reconstruct Surg, 2011, 33(3): 264-269. |
16 | Bazal-Bonelli S, Sánchez-Labrador L, Cortés-Bretón Brinkmann J, et al. Clinical performance of tooth root blocks for alveolar ridge reconstruction[J]. Int J Oral Maxillofac Surg, 2022, 51(5): 680-689. |
17 | Gual-Vaqués P, Polis-Yanes C, Estrugo-Devesa A, et al. Autogenous teeth used for bone grafting: a systematic review[J]. Med Oral Patol Oral Cir Bucal, 2018, 23(1): e112-e119. |
18 | Ramanauskaite A, Sahin D, Sader R, et al. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: a systematic review[J]. Clin Oral Investig, 2019, 23(12): 4263-4287. |
19 | Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. |
20 | Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials[J]. BMJ, 2011, 343: d5928. |
21 | Korsch M, Peichl M. Retrospective study: lateral ridge augmentation using autogenous dentin: tooth-shell technique vs. bone-shell technique[J]. Int J Environ Res Public Health, 2021, 18(6): 3174. |
22 | Xiao W, Hu C, Chu C, et al. Autogenous dentin shell grafts versus bone shell grafts for alveolar ridge reconstruction: a novel technique with preliminary results of a prospective clinical study[J]. Int J Periodontics Restorative Dent, 2019, 39(6): 885-893. |
23 | Schwarz F, Hazar D, Becker K, et al. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study[J]. J Clin Periodontol, 2018, 45(8): 996-1004. |
24 | Schwarz F, Hazar D, Becker K, et al. Short-term outcomes of staged lateral alveolar ridge augmentation u-sing autogenous tooth roots. A prospective controlled clinical study[J]. J Clin Periodontol, 2019, 46(9): 969-976. |
25 | Schwarz F, Obreja K, Mayer S, et al. Efficacy of autogenous tooth roots for a combined vertical and horizontal alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study[J]. J Clin Periodontol, 2022, 49(5): 496-505. |
26 | 林继超. 两种骨替代材料在口腔种植同期引导骨再生中的应用[D]. 福州: 福建医科大学, 2019. |
Lin JC. Application of two kinds of bone substitute materials in dental implantation with guided bone regeneration[D]. Fuzhou: Fujian Medical University, 2019. | |
27 | Li P, Zhu H, Huang D. Autogenous DDM versus Bio-Oss granules in GBR for immediate implantation in periodontal postextraction sites: a prospective clinical study[J]. Clin Implant Dent Relat Res, 2018, 20(6): 923-928. |
28 | Pang KM, Um IW, Kim YK, et al. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone[J]. Clin Oral Implants Res, 2017, 28(7): 809-815. |
29 | 孙娟斌, 刘海光, 柏宁, 等. 自体牙本质颗粒与Bio-Oss骨粉植入治疗牙周骨缺损的临床观察[J]. 口腔医学, 2016, 36(12): 1127-1131. |
Sun JB, Liu HG, Bai N, et al. Clinical observation of the effect on periodontal osseous defect after GTR with implantation of the autogenous dentin paeticles or Bio-Oss [J]. Stomatology, 2016, 36(12): 1127-1131. | |
30 | 潘凌峰, 张景奎, 王嘉涵, 等. 自体牙本质颗粒联合富血小板血浆对引导骨再生治疗牙周骨缺损的效果分析[J]. 中华全科医学, 2020, 18(2): 239-242. |
Pan LF, Zhang JK, Wang JH, et al. Effect of autogenous dentin particles combining platelet rich plasma on gui-ded bone regeneration in the treatment of periodontal bone defect[J]. Chin J General Pract, 2020, 18(2): 239-242. | |
31 | Wang W, Jiang Y, Wang D, et al. Clinical efficacy of autogenous dentin grafts with guided bone regeneration for horizontal ridge augmentation: a prospective observational study[J]. Int J Oral Maxillofac Surg, 2021, 51(6): 837-843. |
32 | Shejali J, Thomas R, Kumar T, et al. Immediate ridge augmentation using autogenous tooth root as a block graft in a periodontally hopeless extraction site: a pilot study[J]. J Oral Implantol, 2020, 46(1): 41-49. |
33 | Pohl V, Pohl S, Sulzbacher I, et al. Alveolar ridge augmentation using dystopic autogenous tooth: 2-year results of an open prospective study[J]. Int J Oral Maxillofac Implants, 2017, 32(4): 870-879. |
34 | Rijal G, Shin HI. Human tooth-derived biomaterial as a graft substitute for hard tissue regeneration[J]. Regen Med, 2017, 12(3): 263-273. |
35 | Um IW. Demineralized dentin matrix (DDM) as a car-rier for recombinant human bone morphogenetic proteins (rhBMP-2)[J]. Adv Exp Med Biol, 2018, 1077: 487-499. |
36 | Bono N, Tarsini P, Candiani G. Demineralized dentin and enamel matrices as suitable substrates for bone regeneration[J]. J Appl Biomater Funct Mater, 2017, 15(3): e236-e243. |
37 | Pietrzak WS, Ali SN, Chitturi D, et al. BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation[J]. Cell Tissue Bank, 2011, 12(2): 81-88. |
38 | Koga T, Minamizato T, Kawai Y, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size[J]. PLoS One, 2016, 11(1): e0147235. |
39 | Park SM, Kim DH, Pang EK. Bone formation of demineralized human dentin block graft with different demineralization time: in vitro and in vivo study[J]. J Craniomaxillofac Surg, 2017, 45(6): 903-912. |
40 | Khoury F, Hanser T. Three-dimensional vertical alveolar ridge augmentation in the posterior maxilla: a 10-year clinical study[J]. Int J Oral Maxillofac Implants, 2019, 34(2): 471-480. |
41 | Nam JW, Kim MY, Han SJ. Cranial bone regeneration according to different particle sizes and densities of demineralized dentin matrix in the rabbit model[J]. Maxillofac Plast Reconstr Surg, 2016, 38(1): 27. |
42 | Becker K, Drescher D, Hönscheid R, et al. Biomechanical, micro-computed tomographic and immunohistoche-mical analysis of early osseous integration at titanium implants placed following lateral ridge augmentation using extracted tooth roots[J]. Clin Oral Implants Res, 2017, 28(3): 334-340. |
43 | Araújo MG, Liljenberg B, Lindhe J. Dynamics of Bio-Oss collagen incorporation in fresh extraction wounds: an experimental study in the dog[J]. Clin Oral Implants Res, 2010, 21(1): 55-64. |
44 | Araújo MG, Carmagnola D, Berglundh T, et al. Ortho-dontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs[J]. J Clin Periodontol, 2001, 28(1): 73-80. |
45 | Cordaro L, Amadé DS, Cordaro M. Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement[J]. Clin Oral Implants Res, 2002, 13(1): 103-111. |
46 | von Arx T, Buser D. Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: a clinical study with 42 patients[J]. Clin Oral Implants Res, 2006, 17(4): 359-366. |
47 | Lindgren C, Mordenfeld A, Johansson CB, et al. A 3-year clinical follow-up of implants placed in two diffe-rent biomaterials used for sinus augmentation[J]. Int J Oral Maxillofac Implants, 2012, 27(5): 1151-1162. |
48 | Mordenfeld A, Lindgren C, Hallman M. Sinus floor augmentation using straumann® boneceramicTM and bio-oss® in a split mouth design and later placement of implants: a 5-year report from a longitudinal study[J]. Clin Implant Dent Relat Res, 2016, 18(5): 926-936. |
49 | Lee JY, Kim YK, Yi YJ, et al. Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study[J]. J Korean Assoc Oral Maxillofac Surg, 2013, 39(4): 156-160. |
50 | Dasmah A, Thor A, Ekestubbe A, et al. Particulate vs. block bone grafts: three-dimensional changes in graft volume after reconstruction of the atrophic maxilla, a 2-year radiographic follow-up[J]. J Craniomaxillofac Surg, 2012, 40(8): 654-659. |
51 | Nedir R, Bischof M, Szmukler-Moncler S, et al. Predicting osseointegration by means of implant primary stability[J]. Clin Oral Implants Res, 2004, 15(5): 520-528. |
52 | Bianchi A, Felice P, Lizio G, et al. Alveolar distraction osteogenesis versus inlay bone grafting in posterior mandibular atrophy: a prospective study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(3): 282-292. |
53 | D'amato S, Tartaro G, Itro A, et al. Block versus particulate/titanium mesh for ridge augmentation for mandibular lateral incisor defects: clinical and histologic analysis[J]. Int J Periodontics Restorative Dent, 2015, 35(1): e1-e8. |
54 | 李嫣斐, 张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203. |
Li YF, Zhang XC. Research progress on the dentin bone repair material[J]. Int J Stomatol, 2022, 49(2): 197-203. |
[1] | 林琪, 林昱, 谢云德, 马忠雄. 原子力显微镜分析激光消融对牙本质表面微纳米结构的影响[J]. 华西口腔医学杂志, 2022, 40(2): 155-161. |
[2] | 韩安鹏, 鲁方丽, 陆玉平, 李强, 陈栋. Micro-CT对遗传性牙本质发育缺陷离体患牙的特征研究[J]. 华西口腔医学杂志, 2022, 40(2): 162-168. |
[3] | 姜丹丹, 周政, 沈玉凤, 唐小雪, 缑小蕊, 黄枚钰, 童一洲, 陈苗苗, 余重庆. 黏蛋白-4和基质金属蛋白酶-7在种植体周病中的表达及意义[J]. 华西口腔医学杂志, 2022, 40(1): 45-51. |
[4] | 汤皓, 朱亚文, 朱家祥, 李全利. 三斜磷钙石糊剂封闭牙本质小管的体外研究[J]. 华西口腔医学杂志, 2021, 39(6): 667-674. |
[5] | 殷荫, 曾维, 敬伟, 汤炜, 郭维华. 高压氧治疗放射性颌骨骨坏死效果的系统评价[J]. 华西口腔医学杂志, 2021, 39(6): 690-697. |
[6] | 杨大维, 肖静宜, 张鹏, 路泊遥, 梁星. 植骨和种植体突入长度对经牙槽嵴上颌窦底提升骨改建影响的回顾性研究[J]. 华西口腔医学杂志, 2021, 39(5): 570-575. |
[7] | 包明哲, 刘伟, 余树容, 门乙, 韩波, 李春洁. 富血小板纤维蛋白在下颌第三磨牙拔除术的应用系统评价与Meta分析[J]. 华西口腔医学杂志, 2021, 39(5): 605-611. |
[8] | 王艳颖, 宫苹, 张健. 不同种植体表面性质对雪旺细胞生物学行为影响的研究[J]. 华西口腔医学杂志, 2021, 39(3): 279-285. |
[9] | 吴瑾, 刘堃, 李明, 朱志军, 汤春波. 翼上颌区种植体联合前部种植体修复萎缩上颌无牙颌的临床回顾研究[J]. 华西口腔医学杂志, 2021, 39(3): 286-292. |
[10] | 陈玲, 陈成, 李志勇, 张绮. 口内扫描数字化印模对固定修复临床应用效果的Meta分析[J]. 华西口腔医学杂志, 2021, 39(3): 306-312. |
[11] | 牛丽娜, 焦凯, 方明, 陈吉华. 仿生修复技术在口腔颌面部硬组织缺损修复中的应用进展[J]. 华西口腔医学杂志, 2021, 39(2): 129-135. |
[12] | 郭锦材, 谢辉, 吴昊, 童铁军. 姜黄素治疗口腔黏膜下纤维性变有效性的Meta分析[J]. 华西口腔医学杂志, 2021, 39(2): 195-202. |
[13] | 郑小菲, 莫安春, 朱娟芳, 王素苹, 杜雅晶, 姚永治. 上颌窦解剖因素对经牙槽嵴顶上颌窦底提升术成骨效果的影响[J]. 华西口腔医学杂志, 2020, 38(6): 652-656. |
[14] | 黄江琴, 胡常琦, 夏勋, 郭水根, 龚金梅, 魏洪武. 经牙槽嵴顶上颌窦底提升同期植入短种植体的回顾性研究[J]. 华西口腔医学杂志, 2020, 38(6): 667-671. |
[15] | 周洁, 甘雪琦, 卢嘉仪, 范林莉, 朱卓立. 牙种植体作支抗局部正畸直立近中倾斜下颌第二磨牙1例[J]. 华西口腔医学杂志, 2020, 38(6): 708-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||