West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (4): 415-425.doi: 10.7518/hxkq.2024.2024140
• Special Review • Next Articles
Chen Liangwei1,2(), Han Jianmin2,3(
), Guo Chuanbin1,2(
)
Received:
2024-04-11
Revised:
2024-05-16
Online:
2024-08-01
Published:
2024-07-17
Contact:
Han Jianmin,Guo Chuanbin
E-mail:chenliangwei@bjmu.edu.cn;hanjianmin@bjmu.edu.cn;guodazuo@sina.com
Supported by:
CLC Number:
Chen Liangwei, Han Jianmin, Guo Chuanbin. Research status and prospects of biodegradable magnesium-based metal-guided bone regeneration membranes[J]. West China Journal of Stomatology, 2024, 42(4): 415-425.
Add to citation manager EndNote|Ris|BibTeX
1 | Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010, 6(5): 1680-1692. |
2 | Wang N, Ma Y, Shi H, et al. Mg-, Zn-, and Fe-based alloys with antibacterial properties as orthopedic implant materials[J]. Front Bioeng Biotechnol, 2022, 10: 888084. |
3 | Zhang D, Li M, Xu R, et al. Complementary and synergistic design of Bi-layered double hydroxides modified magnesium alloy toward multifunctional orthopedic implants[J]. Adv Healthc Mater, 2023, 12(2): e2201367. |
4 | Zhao Y, He P, Yao J, et al. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy[J]. Biomaterials, 2023, 301: 122237. |
5 | Zhang ZQ, Yang YX, Li JA, et al. Advances in coatings on magnesium alloys for cardiovascular stents—A review[J]. Bioact Mater, 2021, 6(12): 4729-4757. |
6 | Tang H, Li S, Zhao Y, et al. A surface-eroding poly (1, 3-trimethylene carbonate) coating for magnesium based cardiovascular stents with stable drug release and improved corrosion resistance[J]. Bioact Mater, 2022, 7: 144-153. |
7 | Sasaki M, Xu W, Koga Y, et al. Effect of parylene C on the corrosion resistance of bioresorbable cardiovascular stents made of magnesium alloy ‘original ZM10’[J]. Materials (Basel), 2022, 15(9): 3132. |
8 | Zhang Y, Cao J, Lu M, et al. A biodegradable magnesium surgical staple for colonic anastomosis: in vitro and in vivo evaluation[J]. Bioact Mater, 2023, 22: 225-238. |
9 | Guo H, Hu J, Shen Z, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis[J]. Acta Biomater, 2021, 121: 713-723. |
10 | Antoniac I, Manescu Paltanea V, Antoniac A, et al. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering[J]. Regen Biomater, 2023, 10: rbad095. |
11 | Sarian MN, Iqbal N, Sotoudehbagha P, et al. Potential bioactive coating system for high-performance absorba-ble magnesium bone implants[J]. Bioact Mater, 2022, 12: 42-63. |
12 | Chow DHK, Wang J, Wan P, et al. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits[J]. Bioact Mater, 2021, 6(11): 4176-4185. |
13 | Luo Y, Zhang C, Wang J, et al. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction[J]. Bioact Mater, 2021, 6(10): 3231-3243. |
14 | Zheng YF, Gu XN, Witte F. Biodegradable metals[J]. Mater Sci Eng Rep, 2014, 77: 1-34. |
15 | Bosiers M, Deloose K, Verbist J, et al. First clinical application of absorbable metal stents in the treatment of critical limb ischemia: 12-month results[J]. Vasc Dis Manage, 2005, 2(4): 86-91. |
16 | Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J Endovasc Ther, 2005, 12(1): 1-5 |
17 | de Hemptinne Q, Picard F, Briki R, et al. Drug-eluting resorbable magnesium scaffold implantation in ST-segment elevation myocardial infarction: a pilot study[J]. J Invasive Cardiol, 2018, 30(6): 202-206. |
18 | Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-Ⅱ): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387(10013): 31-39. |
19 | Haude M, Ince H, Kische S, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSO-LVE-Ⅱand BIOSOLVE-Ⅲ[J]. EuroIntervention, 2017, 13(4): 432-439. |
20 | Hideo-Kajita A, Garcia-Garcia HM, Kolm P, et al. Comparison of clinical outcomes between Magmaris and Orsiro drug eluting stent at 12 months: pooled patient level analysis from BIOSOLVE Ⅱ-Ⅲ and BIOFLOW Ⅱtrials[J]. Int J Cardiol, 2020, 300: 60-65. |
21 | Verheye S, Wlodarczak A, Montorsi P, et al. BIOSOLVE-Ⅳ-registry: safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1 075 patients[J]. Catheter Cardiovasc Interv, 2021, 98(1): E1-E8. |
22 | Gao M, Na D, Ni X, et al. The mechanical property and corrosion resistance of Mg-Zn-Nd alloy fine wires in vitro and in vivo [J]. Bioact Mater, 2021, 6(1): 55-63. |
23 | Xia J, Chen H, Yan J, et al. High-purity magnesium staples suppress inflammatory response in rectal anastomoses[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9506-9515. |
24 | Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011, 6(10): 1187-1197. |
25 | Buser D, Urban I, Monje A, et al. Guided bone regeneration in implant dentistry: basic principle, progress over 35 years, and recent research activities[J]. Periodontol 2000, 2023, 93(1): 9-25. |
26 | Bornstein MM, Halbritter S, Harnisch H, et al. A retrospective analysis of patients referred for implant placement to a specialty clinic: indications, surgical procedu-res, and early failures[J]. Int J Oral Maxillofac Implants, 2008, 23(6): 1109-1116. |
27 | Sanz M, Dahlin C, Apatzidou D, et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration[J]. J Clin Periodontol, 2019, 46(): 82-91. |
28 | Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited[J]. Eur J Oral Sci, 2017, 125(5): 315-337. |
29 | Caballé-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, et al. On the search of the ideal barrier membrane for guided bone regeneration[J]. J Clin Exp Dent, 2018, 10(5): e477-e483. |
30 | Aprile P, Letourneur D, Simon-Yarza T. Membranes for guided bone regeneration: a road from bench to bedside[J]. Adv Healthc Mater, 2020, 9(19): e2000707. |
31 | Li J, Qin L, Yang K, et al. Materials evolution of bone plates for internal fixation of bone fractures: a review[J]. J Mater Sci Technol, 2020, 36: 190-208. |
32 | Hayes JS, Richards RG. The use of titanium and stainless steel in fracture fixation[J]. Expert Rev Med Devi-ces, 2010, 7(6): 843-853. |
33 | Barber CC, Burnham M, Ojameruaye O, et al. A syste-matic review of the use of titanium versus stainless steel implants for fracture fixation[J]. OTA Int, 2021, 4(3): e138. |
34 | Cucchi A, Vignudelli E, Napolitano A, et al. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2017, 19(5): 821-832. |
35 | Zhuang G, Mao J, Yang G, et al. Influence of different incision designs on bone increment of guided bone regeneration (Bio-Gide collagen membrane + Bio-OSS bone powder) during the same period of maxillary ante-rior tooth implantation[J]. Bioengineered, 2021, 12(1): 2155-2163. |
36 | Feng P, Shen S, Shuai Y, et al. PLLA grafting draws GO from PGA phase to the interface in PLLA/PGA bone scaffold owing enhanced interfacial interaction[J]. Sustain Mater Technol, 2023, 35: e00566. |
37 | Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties[J]. e-Polymers, 2020, 20(1): 571-599. |
38 | Gharibshahian M, Salehi M, Beheshtizadeh N, et al. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering[J]. Front Bioeng Biotechnol, 2023, 11: 1168504. |
39 | Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review[J]. Open Dent J, 2014, 8: 56-65. |
40 | Qasim SB, Najeeb S, Delaine-Smith RM, et al. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration[J]. Dent Mater, 2017, 33(1): 71-83. |
41 | Rothamel D, Schwarz F, Sager M, et al. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat[J]. Clin Oral Implants Res, 2005, 16(3): 369-378. |
42 | Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration[J]. Biomaterials, 2009, 30(5): 743-750. |
43 | Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 75-87. |
44 | Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 324-332. |
45 | Soltani Dehnavi S, Mehdikhani M, Rafienia M, et al. Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 236-247. |
46 | Kim YK, Ku JK. Guided bone regeneration[J]. J Korean Assoc Oral Maxillofac Surg, 2020, 46(5): 361-366. |
47 | Barbeck M, Jung O, Smeets R, et al. Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration[J]. In Vivo, 2020, 34(2): 557-568. |
48 | Chen LW, Yan ZY, Qiu TC, et al. Long-term temporospatial complementary relationship between degradation and bone regeneration of Mg-Al alloy[J]. ACS Appl Bio Mater, 2023, 6(11): 4703-4713. |
49 | Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective[J]. Biomaterials, 2017, 112: 287-302. |
50 | Elad A, Rider P, Rogge S, et al. Application of biodegradable magnesium membrane shield technique for immediate dentoalveolar bone regeneration[J]. Biomedici-nes, 2023, 11(3): 744. |
51 | Satya Prasad SV, Prasad SB, Verma K, et al. The role and significance of magnesium in modern day resear-ch—A review [J]. J Magnes alloy, 2022, 10(1): 1-61. |
52 | Barbagallo M, Veronese N, Dominguez LJ. Magnesium in aging, health and diseases[J]. Nutrients, 2021, 13(2): 463. |
53 | Gonzalez J, Hou RQ, Nidadavolu EPS, et al. Magnesium degradation under physiological conditions—best practice[J]. Bioact Mater, 2018, 3(2): 174-185. |
54 | Grünewald TA, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: distribution and impact on the nano-and mineral structure of bone[J]. Biomaterials, 2016, 76: 250-260. |
55 | García-Mintegui C, Córdoba LC, Buxadera-Palomero J, et al. Zn-Mg and Zn-Cu alloys for stenting applications: from nanoscale mechanical characterization to in vitro degradation and biocompatibility[J]. Bioact Mater, 2021, 6(12): 4430-4446. |
56 | Li JA, Chen L, Zhang XQ, et al. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110607. |
57 | Landi E, Logroscino G, Proietti L, et al. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour[J]. J Mater Sci Mater Med, 2008, 19(1): 239-247. |
58 | Tao ZS, Zhou WS, He XW, et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62: 226-232. |
59 | Han HS, Jun I, Seok HK, et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair[J]. Adv Sci (Weinh), 2020, 7(15): 2000800. |
60 | Liu Y, Li H, Xu J, et al. Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation[J]. Chem Eng J, 2021, 410: 127616. |
61 | Shan Z, Xie X, Wu X, et al. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review)[J]. J Orthop Translat, 2022, 36: 184-193. |
62 | Luthringer BJ, Willumeit-Römer R. Effects of magnesium degradation products on mesenchymal stem cell fa-te and osteoblastogenesis[J]. Gene, 2016, 575(1): 9-20. |
63 | Lin S, Yang G, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209. |
64 | Wang Y, Geng Z, Huang Y, et al. Unraveling the osteogenesis of magnesium by the activity of osteoblasts in vitro [J]. J Mater Chem B, 2018, 6(41): 6615-6621. |
65 | Li RW, Kirkland NT, Truong J, et al. The influence of biodegradable magnesium alloys on the osteogenic diffe-rentiation of human mesenchymal stem cells[J]. J Bio-med Mater Res A, 2014, 102(12): 4346-4357. |
66 | Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 68: 948-963. |
67 | Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials, 2019, 197: 207-219. |
68 | Liu WC, Chen S, Zheng L, et al. Angiogenesis assays for the evaluation of angiogenic properties of orthopaedic biomaterials—A general review[J]. Adv Healthc Mater, 2017, 6(5). doi: 10.1002/adhm.201600434 . |
69 | Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016, 22(10): 1160-1169. |
70 | Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-me-diated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun, 2021, 12(1): 2885. |
71 | Kumar DS, Sasanka CT, Ravindra K,et al. magnesium and its alloys in automotive applications—A review[J]. Am J Mater Sci Technol, 2015, 4(1): 12-30. |
72 | Guo Y, Liu W, Ma S, et al. A preliminary study for novel use of two Mg alloys (WE43 and Mg3Gd)[J]. J Mater Sci Mater Med, 2016, 27(5): 82. |
73 | Alvarez-Lopez M, Pereda MD, del Valle JA, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomater, 2010, 6(5): 1763-1771. |
74 | Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27(7): 1013-1018. |
75 | Pan C, Hu Y, Hou Y, et al. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(pt 1): 438-449. |
76 | Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1261-1274. |
77 | Zhang E, Chen H, Shen F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial[J]. J Mater Sci Mater Med, 2010, 21(7): 2151-2163. |
78 | Song GL. Control of biodegradation of biocompatable magnesium alloys[J]. Corros Sci, 2007, 49(4): 1696-1701. |
79 | Augustin J, Feichtner F, Waselau AC, et al. Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(7): 2776-2788. |
80 | Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. PNAS, 2016, 113(3): 716-721. |
81 | Feyerabend F, Fischer J, Holtz J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomater, 2010, 6(5): 1834-1842. |
82 | Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2015, 23(): S28-S40. |
83 | Thangaraju P, Varthya SB. ISO 10993: biological evaluation of medical devices[M]. Berlin: Springer, 2022: 163-187. |
84 | Thanusha AV, Koul V. Biocompatibility evaluation for the developed hydrogel wound dressing—ISO-10993-11 standards—in vitro and in vivo study[J]. Biomed Phys Eng Express, 2021, 8(1). doi: 10.1088/2057-1976/ac3-b2b . |
85 | Liu G, Han J, Li Y, et al. Effects of inorganic ions, orga-nic particles, blood cells, and cyclic loading on in vitro corrosion of MgAl alloys[J]. J Magnes Alloy, 2023, 11(7): 2429-2441. |
86 | Fischer J, Profrock D, Hort N, et al. Improved cytotoxicity testing of magnesium materials[J]. Mater Sci Eng B, 2011, 176(11): 830-834. |
87 | Wang J, Witte F, Xi T, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials[J]. Acta Biomater, 2015, 21: 237-249. |
88 | Rider P, Kačarević ŽP, Elad A, et al. Biodegradation of a magnesium alloy fixation screw used in a guided bone regeneration model in beagle dogs[J]. Materials (Basel), 2022, 15(12): 4111. |
89 | Yan ZY, Zhu JH, Liu GQ, et al. Feasibility and efficacy of a degradable magnesium-alloy GBR membrane for bone augmentation in a distal bone-defect model in beagle dogs[J]. Bioinorg Chem Appl, 2022: 4941635. |
90 | Blašković M, Blašković D, Hangyasi DB, et al. Evaluation between biodegradable magnesium metal GBR membrane and bovine graft with or without hyaluronate[J]. Membranes (Basel), 2023, 13(8): 691. |
91 | Blašković M, Butorac Prpić I, Blašković D, et al. Gui-ded bone regeneration using a novel magnesium membrane: a literature review and a report of two cases in humans[J]. J Funct Biomater, 2023, 14(6): 307. |
92 | Kačarević ŽP, Rider P, Elad A, et al. Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration[J]. Bioact Mater, 2022, 14: 15-30. |
93 | Rider P, Kačarević ŽP, Elad A, et al. Analysis of a pure magnesium membrane degradation process and its functionality when used in a guided bone regeneration model in beagle dogs[J]. Materials (Basel), 2022, 15(9): 3106. |
94 | Kay SA, Wisner-Lynch L, Marxer M, et al. Guided bone regeneration: integration of a resorbable membrane and a bone graft material[J]. Pract Periodontics Aesthet Dent, 1997, 9(2): 185-194, 196. |
95 | Al-Dajani M. Incidence, risk factors, and complications of schneiderian membrane perforation in sinus lift surgery: a meta-analysis[J]. Implant Dent, 2016, 25(3): 409-415. |
96 | Lee JY, Kwon JJ, Sándor GK, et al. Effectiveness of collagen membrane in the treatment of schneiderian membrane perforation[J]. Appl Sci, 2019, 9(7): 1514. |
97 | Elad A, Pul L, Rider P, et al. Resorbable magnesium metal membrane for sinus lift procedures: a case series[J]. BMC Oral Health, 2023, 23(1): 1006. |
98 | Steigmann L, Jung O, Kieferle W, et al. Biocompatibility and immune response of a newly developed volume-stable magnesium-based barrier membrane in combination with a PVD coating for guided bone regeneration (GBR)[J]. Biomedicines, 2020, 8(12): E636. |
99 | Shanbhag S, Pandis N, Mustafa K, et al. Alveolar bone tissue engineering in critical-size defects of experimental animal models: a systematic review and meta-analysis[J]. J Tissue Eng Regen Med, 2017, 11(10): 2935-2949. |
100 | Guo Y, Yu Y, Han L, et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 226-235. |
101 | Zhang HY, Jiang HB, Kim JE, et al. Bioresorbable magnesium-reinforced PLA membrane for guided bone/tissue regeneration[J]. J Mech Behav Biomed Mater, 2020, 112: 104061. |
102 | Barbeck M, Kühnel L, Witte F, et al. Degradation, bone regeneration and tissue response of an innovative volu-me stable magnesium-supported GBR/GTR barrier mem-brane[J]. Int J Mol Sci, 2020, 21(9): E3098. |
103 | Amberg R, Elad A, Rothamel D, et al. Design of a migration assay for human gingival fibroblasts on biodegradable magnesium surfaces[J]. Acta Biomater, 2018, 79: 158-167. |
104 | Amberg R, Elad A, Beuer F, et al. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts[J]. Acta Biomater, 2019, 98: 186-195. |
105 | Okawachi H, Ayukawa Y, Atsuta I, et al. Effect of titanium surface calcium and magnesium on adhesive activity of epithelial-like cells and fibroblasts[J]. Biointerphases, 2012, 7(1/2/3/4): 27. |
106 | Sugimoto Y, Hagiwara A. Cell locomotion on differently charged substrates. Effects of substrate charge on locomotive speed of fibroblastic cells[J]. Exp Cell Res, 1979, 120(2): 245-252. |
107 | Wang L, Luo Q, Zhang X, et al. Co-implantation of magnesium and zinc ions into titanium regulates the beha-viors of human gingival fibroblasts[J]. Bioact Mater, 2021, 6(1): 64-74. |
108 | Rider P, Kačarević ŽP, Elad A, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery[J]. Bioact Mater, 2022, 14: 152-168. |
[1] | Chen Luona, Zhang Xin, Tian Zhengyu, Wang Jian. Effect of artificial aging on optical properties of ultra-translucent zirconia ceramics of different brands [J]. West China Journal of Stomatology, 2024, 42(3): 353-358. |
[2] | Li Yan, Zhong Mengyi, Yang Ying. Effect of speed sintering and aging on the translucency of high-translucent zirconia [J]. West China Journal of Stomatology, 2024, 42(1): 62-66. |
[3] | Liu Yiming, Zhao Yun, Han Mei, Zhang Yuqiu, Mi Fanglin, Wang Bing. Preparation of functional poly-(lactic acid-co-glycolic acid)-based guided bone-regeneration membrane and its application in the reconstruction of mandibular defects in rats [J]. West China Journal of Stomatology, 2022, 40(5): 522-531. |
[4] | Lin Yunfeng. Research progress on the application of framework nucleic acid in bone regeneration [J]. West China Journal of Stomatology, 2021, 39(6): 624-632. |
[5] | Wang Yanan, Wu Xuan, Jia Tingting, Feng Yao, Liu Shiyue, Xu Xin, Zhang Dongjiao. Effect of type 2 diabetes mellitus on mandibular bone regeneration and the expression of T helper cell 17/regulat-ory T cell-related factors in mice [J]. West China Journal of Stomatology, 2021, 39(6): 642-650. |
[6] | Chen Luyi, Huang Min, Wu Jiaqi, Luo Jun. Guided bone regeneration-assisted orthodontic treatment for closing the space of missing central incisors [J]. West China Journal of Stomatology, 2021, 39(4): 482-488. |
[7] | Jiang Yixuan, Gong Ping, Zhang Liang. A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration [J]. West China Journal of Stomatology, 2020, 38(5): 571-575. |
[8] | Tiantian Yu,Jin Liu,Junjing Yin,Xiangna Xu,Shengjie Yan,Jing Lan. Effects of concentrated growth factors on relieving postoperative reaction of guided bone regeneration in the esthetic zone [J]. West China Journal of Stomatology, 2019, 37(4): 398-402. |
[9] | Yubin Cao,Chang Liu,Weilin Pan,Yuan Tu,Chunjie Li,Chengge Hua. Research progress on the modification of guided bone regeneration membranes [J]. West China Journal of Stomatology, 2019, 37(3): 325-329. |
[10] | Tian Zhu,Weihua. Guo. Dentin matrix in tissue regeneration: a progress report [J]. West China Journal of Stomatology, 2019, 37(1): 92-96. |
[11] | Feng Liao, Shibo Liu, Yao Liu, Hanghang Liu, Jian Hu, Xian Liu. Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariec-tomized rats [J]. West China Journal of Stomatology, 2018, 36(4): 367-371. |
[12] | Xinxin Ding, Yanmin Zhou, Xing-chen Xiang, Lin Meng, Qin Qin, Shan Ye. Research progress on chitosan composite scaffolds in bone tissue engineering [J]. West China Journal of Stomatology, 2018, 36(4): 441-446. |
[13] | Lingling Jia, Qianbing. Wan. Progress on matrix metalloproteinase inhibitors [J]. West China Journal of Stomatology, 2017, 35(2): 208-214. |
[14] | Deng Xia, Bai Shi. Biomineralization of electrospun polycaprolactone-guided bone regeneration membrane [J]. West China Journal of Stomatology, 2016, 34(6): 570-574. |
[15] | Wang Danyang, Zhang Ling, Li Fang, Xu Shuai, Chen Jihua. Study of the types of matrix metalloproteinases involved in dentin bonding interface degradation [J]. West China Journal of Stomatology, 2014, 32(4): 394-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||