West China Journal of Stomatology ›› 2020, Vol. 38 ›› Issue (3): 330-337.doi: 10.7518/hxkq.2020.03.018
Previous Articles Next Articles
Wen Jiahui, Wu Yanmin(), Chen Lili
Received:
2019-02-21
Revised:
2019-12-19
Online:
2020-06-01
Published:
2020-05-28
Contact:
Yanmin Wu
E-mail:wuyanmin@zju.edu.cn
Supported by:
CLC Number:
Wen Jiahui, Wu Yanmin, Chen Lili. Functions of non-coding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells[J]. West China Journal of Stomatology, 2020, 38(3): 330-337.
Add to citation manager EndNote|Ris|BibTeX
[1] | Pihlstrom BL, Michalowicz BS, Johnson NW . Periodontal diseases[J]. Lancet, 2005,366(9499):1809-1820. |
[2] | Nakahara T, Nakamura T, Kobayashi E , et al. In situ tissue engineering of periodontal tissues by seeding with periodontal ligament-derived cells[J]. Tissue Eng, 2004,10(3/4):537-544. |
[3] | Sanz AR, Carrión FS, Chaparro AP . Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J]. Periodontol 2000, 2015,67(1):251-267. |
[4] |
Bright R, Hynes K, Gronthos S , et al. Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review[J]. J Periodontal Res, 2015,50(2):160-172.
doi: 10.1111/jre.2015.50.issue-2 URL |
[5] | Beermann J, Piccoli MT, Viereck J , et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches[J]. Physiol Rev, 2016,96(4):1297-1325. |
[6] |
Stoecklin-Wasmer C, Guarnieri P, Celenti R , et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940.
doi: 10.1177/0022034512456551 URL |
[7] |
Zou Y, Li C, Shu F , et al. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis[J]. J Cell Biochem, 2015,116(4):640-647.
doi: 10.1002/jcb.25015 URL |
[8] | Jin D, Wu X, Yu H , et al. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis[J]. Am J Transl Res, 2018,10(5):1498-1510. |
[9] | Chang M, Lin H, Luo M , et al. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells[J]. In Vitro Cell Dev Biol Anim, 2015,51(8):797-807. |
[10] | Hao Y, Ge Y, Li J , et al. Identification of microRNAs by microarray analysis and prediction of target genes involved in the osteogenic differentiation of human periodontal ligament stem cells[J]. J Periodontol, 2017,88(10):1105-1113. |
[11] |
Qu Q, Fang F, Wu B , et al. Potential role of long non-Coding RNA in osteogenic differentiation of human periodontal ligament stem cells[J]. J Periodontol, 2016,87(7):e127-e137.
doi: 10.1902/jop.2016.150592 URL |
[12] | Huang Y, Zhang Y, Li X , et al. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force[J]. Eur J Orthod, 2018. doi: 10.1093/ejo/cjy057. |
[13] |
Zheng Y, Li X, Huang Y , et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis[J]. J Periodontol, 2017,88(9):906-914.
doi: 10.1902/jop.2017.170078 URL |
[14] | Wang H, Feng C, Jin Y , et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2018. doi: 10.1002/jcp.27686. |
[15] |
Walsh MC, Lee JE, Choi Y . Tumor necrosis factor receptorassociated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system[J]. Immunol Rev, 2015,266(1):72-92.
doi: 10.1111/imr.12302 URL |
[16] | Hung PS, Chen FC, Kuang SH , et al. miR-146a induces differentiation of periodontal ligament cells[J]. J Dent Res, 2010,89(3):252-257. |
[17] | Tang L, Li X, Bai Y , et al. MicroRNA-146a negatively regulates the inflammatory response to Porphyromonas gingivialis in human periodontal ligament fibroblast via TRAF6/p38 pathway[J]. J Periodontol, 2018. doi: 10.1002/JPER.18-0190. |
[18] | 朱东望, 薛栋, 赖文 , 等. 微RNA-146a反转牙龈卟啉单胞菌脂多糖对人牙周膜细胞成骨的抑制作用[J]. 中华口腔医学杂志, 2018,53(11):753-759. |
Zhu DW, Xue D, Lai W , et al. microRNA-146a reverses the inhibitory effects of Porphyromonas gingivalis lipopolysaccharide on osteogenesis of human periodontal ligament cells[J]. Chin J Stomatol, 2018,53(11):753-759. | |
[19] |
Liu Y, Liu W, Hu C , et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis[J]. Stem Cells, 2011,29(11):1804-1816.
doi: 10.1002/stem.728 URL |
[20] |
Xing L, Zhang M, Chen D . Smurf control in bone cells[J]. J Cell Biochem, 2010,110(3):554-563.
doi: 10.1002/jcb.22586 URL |
[21] | Liu W, Liu Y, Guo T , et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013,4(3):e539. |
[22] | Zhang JF, Fu WM, He ML , et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol, 2011,8(5):829-838. |
[23] | 杨倩娟, 刘文佳, 常文悦 , 等. miR-20a对人炎症牙周膜干细胞成骨分化能力的影响[J]. 实用口腔医学杂志, 2016,32(2):186-189. |
Yang QJ, Liu WJ, Chang WY , et al. The effects of miR-20a on the osteogenic differentiation potential of the inflammatory PDLSCs[J]. J Pract Stomatol, 2016,32(2):186-189. | |
[24] | 杨倩娟 . miR-17~92家族介导的HDAC9对炎症牙周膜干细胞成骨分化能力的影响[D]. 西安: 第四军医大学, 2016. |
Yang QJ . miR-17-92 cluster mediated HDAC9 effects on theosteogenic capability ofthe inflammatory PDLSCs[D]. Xi’an: The Fourth Military Medical University, 2016. | |
[25] | 邓超, 伍燕, 杨琨 , 等. 微小RNA-17在糖基化终末产物刺激下人牙周膜干细胞骨向分化过程中的调控作用[J]. 华西口腔医学杂志, 2015,33(1):21-24. |
Deng C, Wu Y, Yang K , et al. Effect of microRNA-17 on osteogenic differentiation of advanced glycation end products-stimulated human periodontal ligament stem cells[J]. West China J Stomatol, 2015,33(1):21-24. | |
[26] | 伍燕, 邓超, 杨琨 , 等. 糖基化终末产物对人牙周膜干细胞骨向分化过程中的Wnt经典信号通路研究[J]. 华西口腔医学杂志, 2015,33(6):627-632. |
Wu Y, Deng C, Yang K , et al. Canonical Wnt signaling pathway of the osteogenic differentiation of human ligament stem cells induced by advanced glycation end products[J]. West China J Stomatol, 2015,33(6):627-632. | |
[27] |
Yang N, Li Y, Wang G , et al. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 sunctionalaxis[J]. Differentiation, 2017,97:33-43.
doi: 10.1016/j.diff.2017.08.004 URL |
[28] |
Mahoney Rogers AA, Zhang J, Shim K . Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling[J]. Dev Biol, 2011,353(1):94-104.
doi: 10.1016/j.ydbio.2011.02.022 URL |
[29] |
Hu CH, Sui BD, Du FY , et al. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice[J]. Sci Rep, 2017,7:43191.
doi: 10.1038/srep43191 URL |
[30] |
Wei F, Yang S, Guo Q , et al. MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5[J]. Sci Rep, 2017,7(1):16608.
doi: 10.1038/s41598-017-16720-8 URL |
[31] |
Li C, Li C, Yue J , et al. miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells[J]. Mol Med Rep, 2012,5(5):1340-1346.
doi: 10.3892/mmr.2012.797 URL |
[32] |
Wei F, Liu D, Feng C , et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells[J]. Stem Cells Dev, 2015,24(3):312-319.
doi: 10.1089/scd.2014.0191 URL |
[33] | Wang X, Guo B, Li Q , et al. miR-214 targets ATF4 to inhibit bone formation[J]. Nat Med, 2013,19(1):93-100. |
[34] |
Yu S, Zhu K, Lai Y , et al. ATF4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells[J]. Int J Biol Sci, 2013,9(3):256-266.
doi: 10.7150/ijbs.5898 URL |
[35] | Yao S, Zhao W, Ou Q , et al. MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4[J]. Stem Cells Int, 2017,2017:3028647. |
[36] |
Cao F, Zhan J, Chen X , et al. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β catenin signaling[J]. Mol Med Rep, 2017,16(6):9301-9308.
doi: 10.3892/mmr.2017.7821 URL |
[37] |
Wang H, Xie Z, Hou T , et al. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b[J]. Cell Physiol Biochem, 2017,41(2):530-542.
doi: 10.1159/000457013 URL |
[38] |
Haemmig S, Baumgartner U, Glück A , et al. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas[J]. Cell Death Dis, 2014,5(6):e1279.
doi: 10.1038/cddis.2014.245 URL |
[39] |
Xue N, Qi L, Zhang G , et al. miRNA-125b regulates osteogenic differentiation of periodontal ligament cells through NKIRAS2/NF-κB pathway[J]. Cell Physiol Biochem, 2018,48(4):1771-1781.
doi: 10.1159/000492350 URL |
[40] |
João SM, Arana-Chavez VE . Expression of connexin 43 and ZO-1 in differentiating ameloblasts and odontoblasts from rat molar tooth germs[J]. Histochem Cell Biol, 2003,119(1):21-26.
doi: 10.1007/s00418-002-0482-3 URL |
[41] | 杜莉, 曹伟靖, 田莹 , 等. MicroRNA-125b对人牙周膜干细胞成骨分化的影响[J]. 上海口腔医学, 2018,27(1):11-17. |
Du L, Cao WJ, Tian Y , et al. MicroRNA-125b regulates osteogenic differentiation of human periodontal ligament stem cells[J]. Shanghai J Stomatol, 2018,27(1):11-17. | |
[42] |
Ge Y, Li J, Hao Y , et al. MicroRNA-543 functions as an osteogenesis promoter in human periodontal ligament-derived stem cells by inhibiting transducer of ERBB2, 2[J]. J Periodontal Res, 2018,53(5):832-841.
doi: 10.1111/jre.2018.53.issue-5 URL |
[43] | Yan G, Wang X, Yang F , et al. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6[J]. J Cell Biochem, 2017,118(7):1653-1658. |
[44] | Diomede F, Merciaro I, Martinotti S , et al. miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold[J]. J Biol Reg Home Ag, 2016,30(4):1009-1018. |
[45] |
Gay I, Cavender A, Peto D , et al. Differentiation of human dental stem cells reveals a role for microRNA-218[J]. J Periodontal Res, 2014,49(1):110-120.
doi: 10.1111/jre.12086 URL |
[46] | Chen Z, Liu HL . Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation[J]. J Oral Pathol Med, 2016,46(4):313-320. |
[47] | 赵蔚光, 屈爽, 尚红卫 , 等. MicroRNA-29家族在骨组织生理及病理进程中的作用研究进展[J]. 牙体牙髓牙周病学杂志, 2017,27(11):664-668. |
Zhao WG, Qu S, Shang HW , et al. The study progression of the function of MicroRNA-29 in bone diseases[J]. Chin J Conserv Dent, 2017,27(11):664-668. | |
[48] |
Meikle MC . The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006,28(3):221-240.
doi: 10.1093/ejo/cjl001 URL |
[49] | Xu H, Han X, Meng Y , et al. Favorable effect of myofibroblasts on collagen synjournal and osteocalcin production in the periodontal ligament[J]. Am J Orthod Dentofacial Orthop, 2014,145(4):469-479. |
[50] | Chen Y, Mohammed A, Oubaidin M , et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells[J]. Gene, 2015,566(1):13-17. |
[51] |
Qi L, Zhang Y . The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway[J]. Cell Physiol Biochem, 2014,33(2):433-445.
doi: 10.1159/000358624 URL |
[52] |
Chang M, Lin H, Fu H , et al. MicroRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading[J]. J Cell Physiol, 2017,232(12):3762-3774.
doi: 10.1002/jcp.v232.12 URL |
[53] |
Kretz M, Webster DE, Flockhart RJ , et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J]. Genes Dev, 2012,26(4):338-343.
doi: 10.1101/gad.182121.111 URL |
[54] |
Jia Q, Jiang W, Ni L . Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2015,60(2):234-241.
doi: 10.1016/j.archoralbio.2014.10.007 URL |
[55] | Peng W, Deng W, Zhang J , et al. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758[J]. Biochem Biophys Res Commun, 2018,503(2):815-821. |
[56] | Zhang X, Zhang Y, Mao Y , et al. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma[J]. Onco Targets Ther, 2018,11:629-638. |
[57] | 贾搏 . LncRNA-PCAT1对人牙周膜干细胞成骨分化调控机制的研究[D]. 广州: 南方医科大学, 2018. |
Jia B . A study on mechanism of LncRNA-PCAT1 in regulating osteogenic differentiation of human periodontal ligament stem cells[D]. Guangzhou: Southern Medical University, 2018. | |
[58] |
Wang L, Wu F, Song Y , et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J]. Cell Death Dis, 2016,7(8):e2327.
doi: 10.1038/cddis.2016.125 URL |
[59] | 邹宛桦, 秦文, 徐悦蓉 , 等. 长链非编码RNAlinc-01135对静态牵张力作用下人炎症牙周膜干细胞成骨分化的影响[J]. 实用口腔医学杂志, 2018,34(2):193-197. |
Zou WH, Qin W, Xu YR , et al. The effects of long non-coding RNA linc-01135 on the osteogenic differentiation capability of human inflammatory PDLSCs under static mechanical strain loading[J]. J Pract Stomatol, 2018,34(2):193-197. | |
[60] | Zhang Q, Chen L, Cui S , et al. Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment[J]. Sci Rep, 2017,7(1):13991. |
[61] |
Zheng Y, Li X, Huang Y , et al. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells[J]. Peer J, 2018,6(4):e5214.
doi: 10.7717/peerj.5214 URL |
[62] | Zhuang W, Ge X, Yang S , et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription[J]. Stem Cells, 2015,33(6):1985-1997. |
[63] | Liu Y, Zeng X, Miao J , et al. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells[J]. J Cell Physiol, 2018. doi: 10.1002/jcp.27248. |
[64] | He Q, Yang S, Gu X , et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A[J]. Cell Death Dis, 2018,9(5):455. |
[65] | 徐悦蓉, 邹宛桦, 秦文 , 等. LncRNA-7460调控炎症来源牙周膜干细胞成骨分化的研究[J]. 实用口腔医学杂志, 2018,34(3):327-331. |
Xu YR, Zou WH, Qin W , et al. Long non-coding RNA 7460 regulates the osteogenic differentiation of hPDLSCs[J]. J Pract Stomatol, 2018,34(3):327-331. | |
[66] | Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100. |
[67] |
Memczak S, Jens M, Elefsinioti A , et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013,495(7441):333-338.
doi: 10.1038/nature11928 URL |
[68] |
Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232.
doi: 10.1186/s13287-018-0976-0 URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||