1 |
Ercal P, Pekozer GG, Kose GT. Dental stem cells in bone tissue engineering: current overview and challenges[J]. Adv Exp Med Biol, 2018, 1107: 113-127.
|
2 |
Dave JR, Tomar GB. Dental tissue-derived mesenchymal stem cells: applications in tissue engineering[J]. Crit Rev Biomed Eng, 2018, 46(5): 429-468.
|
3 |
Matichescu A, Ardelean LC, Rusu LC, et al. Advanced biomaterials and techniques for oral tissue engineering and regeneration-a review[J]. Materials (Basel), 2020, 13(22): 5303.
|
4 |
Zhou T, Pan JH, Wu PY, et al. Dental follicle cells: roles in development and beyond[J]. Stem Cells Int, 2019, 2019: 9159605.
|
5 |
Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future[J]. Expert Opin Biol Ther, 2018, 18(2): 187-196.
|
6 |
Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles[J]. Physiol Rev, 2010, 90(1): 291-366.
|
7 |
Bouchard R, Clark RB, Juhasz AE, et al. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1 [J]. J Physiol, 2004, 556(Pt 3): 773-790.
|
8 |
Zhang XY, Cui XD, Li X, et al. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells[J]. J Mol Cell Cardiol, 2019, 127: 57-66.
|
9 |
Komarova SV, Dixon SJ, Sims SM. Osteoclast ion channels: potential targets for antiresorptive drugs[J]. Curr Pharm Des, 2001, 7(8): 637-654.
|
10 |
Weidema AF, Dixon SJ, Sims SM. Electrophysiological characterization of ion channels in osteoclasts isolated from human deciduous teeth[J]. Bone, 2000, 27(1): 5-11.
|
11 |
Wang SP, Wang JA, Luo RH, et al. Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation[J]. Clin Exp Pharmacol Ph-ysiol, 2008, 35(9): 1077-1184.
|
12 |
Park KS, Jung KH, Kim SH, et al. Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein[J]. Stem Cells, 2007, 25(8): 2044-2052.
|
13 |
Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth[J]. Matrix Biol, 2005, 24(2): 155-165.
|
14 |
Huang YY, Wu S, Zhou Y, et al. The effects of extracts from “Red Complex” pathogens on human dental follicle cells[J]. J Biomater Tis Eng, 2020, 10(8): 1128-1134.
|
15 |
Kirkham GR, Elliot KJ, Keramane A, et al. Hyperpolarization of human mesenchymal stem cells in response to magnetic force[J]. IEEE Trans Nanobioscience, 2010, 9(1): 71-74.
|
16 |
Sundelacruz S, Levin M, Kaplan DL. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells[J]. PLoS One, 2008, 3(11): e-3737.
|
17 |
Bhavsar MB, Cato G, Hauschild A, et al. Membrane potential (Vmem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation[J]. PeerJ, 2019, 7: e6341.
|
18 |
Kito H, Yamazaki D, Ohya S, et al. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells[J]. Biochem Biophys Res Commun, 2011, 411(2): 293-298.
|
19 |
Gattlen C, Deftu AF, Tonello R, et al. The inhibition of Kir2.1 potassium channels depolarizes spinal microglial cells, reduces their proliferation, and attenuates neuropathic pain[J]. Glia, 2020, 68(10): 2119-2135.
|
20 |
Pini J, Giuliano S, Matonti J, et al. Osteogenic and chondrogenic master genes expression is dependent on the Kir2.1 potassium channel through the bone morphogenetic protein pathway[J]. J Bone Miner Res, 2018, 33(10): 1826-1841.
|
21 |
Pchelintseva E, Djamgoz MBA. Mesenchymal stem cell differentiation: control by calcium-activated potassium channels[J]. J Cell Physiol, 2018, 233(5): 3755-3768.
|
22 |
Aydin S, Şahin F. Stem cells derived from dental tissues[J]. Adv Exp Med Biol, 2019, 1144: 123-132.
|
23 |
Sacco S, Giuliano S, Sacconi S, et al. The inward rectifier potassium channel Kir2.1 is required for osteoblastogenesis[J]. Hum Mol Genet, 2015, 24(2): 471-479.
|