[1] |
Kontos CK . Surrogate prognostic biomarkers in OSCC: the paradigm of PA28γ overexpression[J]. EBioMedicine, 2015,2(8):784-785.
|
[2] |
Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424.
|
[3] |
Bray F, Jemal A, Grey N , et al. Global cancer transitions according to the Human Development Index (2008—2030): a population-based study[J]. Lancet Oncol, 2012,13(8):790-801.
|
[4] |
Panzarella V, Pizzo G, Calvino F , et al. Diagnostic delay in oral squamous cell carcinoma: the role of cognitive and psychological variables[J]. Int J Oral Sci, 2014,6(1):39-45.
|
[5] |
李高飞, 覃世逆, 徐伟文 . 蛋白酶体激活因子PA28γ与肿瘤相关研究进展[J]. 分子诊断与治疗杂志, 2012,4(5):356-360.
|
|
Li GF, Qin SN, Xu WW . Research progress in the relationship between proteasome activator PA28γ and cancer[J]. J Mol Diagn Ther, 2012,4(5):356-360.
|
[6] |
Xu X, Liu D, Ji N , et al. A novel transcript variant of proteasome activator 28γ: identification and function in oral cancer cells[J]. Int J Oncol, 2015,47(1):188-194.
|
[7] |
Chen SJ, Wang QW, Wang LS , et al. REGγ deficiency suppresses tumor progression via stabilizing CK1ε in renal cell carcinoma[J]. Cell Death Dis, 2018,9(6):627.
|
[8] |
Li L, Dang YY, Zhang JS , et al. REGγ is critical for skin carcinogenesis by modulating the Wnt/β-catenin pathway[J]. Nat Commun, 2015,6:6875.
|
[9] |
Li J, Feng X, Sun C , et al. Associations between proteasomal activator PA28γ and outcome of oral squamous cell carcinoma: evidence from cohort studies and functional analyses[J]. EBioMedicine, 2015,2(8):851-858.
|
[10] |
王韵, 吉宁, 周敏 , 等. microRNA-223过表达与抑制表达慢病毒载体的构建及鉴定[J]. 华西口腔医学杂志, 2015,33(5):451-455.
|
|
Wang Y, Ji N, Zhou M , et al. Construction and identification of recombinant lentivirus vector for microRNA-223 overexpression and suppression[J]. West China J Stomatol, 2015,33(5):451-455.
|
[11] |
Moncsek A, Gruner M, Meyer H , et al. Evidence for anti-apoptotic roles of proteasome activator 28γ via inhibiting caspase activity[J]. Apoptosis, 2015,20(9):1211-1228.
|
[12] |
Barton LF, Runnels HA, Schell TD , et al. Immune defects in 28-kDa proteasome activator gamma-deficient mice[J]. J Immunol, 2004,172(6):3948-3954.
|
[13] |
Sun L, Fan G, Shan P , et al. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome[J]. Nat Commun, 2016,7:12497.
|
[14] |
Huang L, Haratake K, Miyahara H , et al. Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility[J]. Sci Rep, 2016,6:23171.
|
[15] |
Wang H, Bao W, Jiang F , et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ[J]. Cancer Lett, 2015,360(2):269-279.
|
[16] |
Levy-Barda A, Lerenthal Y, Davis AJ , et al. Involvement of the nuclear proteasome activator PA28γ in the cellular response to DNA double-strand breaks[J]. Cell Cycle, 2011,10(24):4300-4310.
|
[17] |
Li X, Lonard DM, Jung SY , et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J]. Cell, 2006,124(2):381-392.
|
[18] |
Chen X, Barton LF, Chi Y , et al. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome[J]. Mol Cell, 2007,26(6):843-852.
|