[1] |
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007[J]. CA Cancer J Clin, 2007, 57(1): 43-66.
|
[2] |
McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015[J]. Adv Nutr, 2016, 7(2): 418-419.
|
[3] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
[4] |
Ayub B, Qureshi FA, Hassan NH, et al. Optimising head and neck cancer patient management: the crucial contributions of multidisciplinary tumour board decision-making[J]. Ecancermedicalscience, 2024, 18: 1710.
|
[5] |
Caruntu A, Yang SF, Acero J. New insights for an advanced understanding of the molecular mechanisms in oral squamous cell carcinoma[J]. Int J Mol Sci, 2024, 25(13): 6964.
|
[6] |
Chen W, Wu X, Hu J, et al. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGA-T2, and SMAD7[J]. Cardiovasc Diabetol, 2024, 23(1): 21.
|
[7] |
He H, Wang H, Chen X, et al. Treatment for type 2 diabetes and diabetic nephropathy by targeting Smad3 signaling[J]. Int J Biol Sci, 2024, 20(1): 200-217.
|
[8] |
Li Y, Zhao Y, Zhong G, et al. Vascular smooth muscle cell-specific miRNA-214 deficiency alleviates simulated microgravity-induced vascular remodeling[J]. FASEB J, 2024, 38(1): e23369.
|
[9] |
Li W, Bai P, Li W. UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates atherosclerosis in mice via regulating the SMAD7/YAP1 axis[J]. Mol Immunol, 2024, 170: 119-130.
|
[10] |
Gong M, Guo Y, Dong H, et al. Trigonelline inhibits tubular epithelial-mesenchymal transformation in diabetic kidney disease via targeting Smad7[J]. Biomed Pharmacother, 2023, 168: 115747.
|
[11] |
Huang C, Peng M, Zhong X, et al. The correlation between the expression of Smad2/3 and Smad7 proteins in blood neutrophils and asthma disease[J/OL]. Minerva Med, 2024. doi: 10.23736/S0026-4806.23.08756-6 .
|
[12] |
Gaikwad AV, Eapen MS, Dey S, et al. TGF-β1, pSmad-2/3, Smad-7, and β-Catenin are augmented in the pulmonary arteries from patients with idiopathic pulmonary fibrosis (IPF): role in driving endothelial-to-mesenchymal transition (EndMT)[J]. J Clin Med, 2024, 13(4): 1160.
|
[13] |
Liu C, Ni L, Li X, et al. SETD2 deficiency promotes renal fibrosis through the TGF-β/Smad signalling pathway in the absence of VHL[J]. Clin Transl Med, 2023, 13(11): e1468.
|
[14] |
Luo H, Fu L, Wang X, et al. Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7[J]. Chin Med, 2023, 18(1): 161.
|
[15] |
Luiz-Ferreira A, Pacifico T, Cruz ÁC, et al. TRAIL-sensitizing effects of flavonoids in cancer[J]. Int J Mol Sci, 2023, 24(23): 16596.
|
[16] |
Chen Z, Wang Y, Lu X, et al. The immune regulation and therapeutic potential of the SMAD gene family in breast cancer[J]. Sci Rep, 2024, 14(1): 6769.
|
[17] |
Li Z, Zhao J, Wu Y, et al. TRAF2 decrease promotes the TGF-β-mTORC1 signal in MAFLD-HCC through enhancing AXIN1-mediated Smad7 degradation[J]. FA-SEB J, 2024, 38(4): e23491.
|
[18] |
Colella M, Iannucci A, Maresca C, et al. SMAD7 sustains XIAP expression and migration of colorectal carcinoma cells[J]. Cancers (Basel), 2024, 16(13): 2370.
|
[19] |
Chen J, Hu J, Li X, et al. Enhydrin suppresses the malignant phenotype of GBM via Jun/Smad7/TGF-β1 signaling pathway[J]. Biochem Pharmacol, 2024, 226: 116380.
|
[20] |
Zhao Z, Zhang H, Zhang F, et al. Circular RNA sirtuin-1 restrains the malignant phenotype of non-small cell lung cancer cells via the microRNA-510-5p/SMAD family member 7 axis[J]. Acta Biochim Pol, 2023, 70(4): 855-863.
|
[21] |
Dai T, Qiu S, Gao X, et al. Circular RNA circWNK1 inhibits the progression of gastric cancer via regulating the miR-21-3p/SMAD7 axis[J]. Cancer Sci, 2024, 115(3): 974-988.
|
[22] |
Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes[J]. Cell, 1989, 59(6): 1203-1211.
|
[23] |
Kawano T, Yanoma S, Nakamura Y, et al. Evaluation of soluble adhesion molecules CD44 (CD44st, CD44v5, CD44v6), ICAM-1, and VCAM-1 as tumor markers in head and neck cancer[J]. Am J Otolaryngol, 2005, 26(5): 308-313.
|
[24] |
Mazzoni A, Maggi L, Montaini G, et al. Human T cells interacting with HNSCC-derived mesenchymal stromal cells acquire tissue-resident memory like properties[J]. Eur J Immunol, 2020, 50(10): 1571-1579.
|
[25] |
Jia M, Li Q, Guo J, et al. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation[J]. Circ Res, 2022, 130(7): 1038-1055.
|
[26] |
Zhang S, Xie B, Wang L, et al. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer[J]. J Clin Invest, 2021, 131(3): 140315.
|
[27] |
Pinho S, Wei Q, Maryanovich M, et al. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells[J]. Nat Cell Biol, 2022, 24(3): 290-298.
|
[28] |
Zhang D, Bi J, Liang Q, et al. VCAM1 promotes tumor cell invasion and metastasis by inducing EMT and transendothelial migration in colorectal cancer[J]. Front Oncol, 2020, 10: 1066.
|
[29] |
Huang J, Deng Q, Wang Q, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma[J]. Nat Genet, 2012, 44(10): 1117-1121.
|
[30] |
Wang K, Zhang R, Li C, et al. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma[J]. Discov Oncol, 2024, 15(1): 284.
|
[31] |
Sato M, Enokida T, Fujisawa T, et al. Induction che-motherapy with paclitaxel, carboplatin, and cetuximab (PCE) followed by chemoradiotherapy for unresectable locoregional recurrence after curative surgery in patients with squamous cell carcinoma of the head and neck[J]. Front Oncol, 2024, 14: 1420860.
|
[32] |
Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci, 2011, 7(7):1056-1067.
|
[33] |
Leone RD, Powell JD. Metabolism of immune cells in cancer[J]. Nat Rev Cancer, 2020, 20(9): 516-531.
|
[34] |
Boschert V, Boenke J, Böhm AK, et al. Differential immune checkpoint protein expression in HNSCC: the role of HGF/MET signaling[J]. Int J Mol Sci, 2024, 25(13): 7334.
|
[35] |
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455.
|
[36] |
Bronte V, Murray PJ. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer[J]. Nat Med, 2015, 21(2): 117-119.
|