1 |
Ball JR, Shelby T, Hernandez F, et al. Delivery of grow-th factors to enhance bone repair[J]. Bioengineering (Basel), 2023, 10(11): 1252.
|
2 |
Wei J, Xia X, Xiao S, et al. Sequential dual-biofactor release from the scaffold of mesoporous HA microspheres and PLGA matrix for boosting endogenous bone regeneration[J]. Adv Healthc Mater, 2023, 12(20): e2300624.
|
3 |
Minardi S, Fernandez-Moure JS, Fan D, et al. Biocompatible PLGA-mesoporous silicon microspheres for the controlled release of BMP-2 for bone augmentation[J]. Pharmaceutics, 2020, 12(2): 118.
|
4 |
De Witte TM, Fratila-Apachitei LE, Zadpoor AA, et al. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices[J]. Regen Biomater, 2018, 5(4): 197-211.
|
5 |
Guo X, Song P, Li F, et al. Research progress of design drugs and composite biomaterials in bone tissue engineering[J]. Int J Nanomedicine, 2023, 18: 3595-3622.
|
6 |
Shah NJ, Macdonald ML, Beben YM, et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films[J]. Biomaterials, 2011, 32(26): 6183-6193.
|
7 |
Minardi S, Pandolfi L, Taraballi F, et al. PLGA-mesoporous silicon microspheres for the in vivo controlled temporospatial delivery of proteins[J]. ACS Appl Mater Interfaces, 2015, 7(30): 16364-16373.
|
8 |
Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration[J]. Acta Biomater, 2021, 127: 56-79.
|
9 |
Sun F, Sun X, Wang H, et al. Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering[J]. Int J Mol Sci, 2022, 23(10): 5831.
|
10 |
Wang Y, Zhao L, Zhou L, et al. Sequential release of vascular endothelial growth factor-A and bone morphogenetic protein-2 from osteogenic scaffolds assembled by PLGA microcapsules: a preliminary study in vitro [J]. Int J Biol Macromol, 2023, 232: 123330.
|
11 |
王莹, 陈晨, 陈刚. BMP-2缓释型PLGA微囊作为引导骨再生支架的初步研究[J]. 南京医科大学学报(自然科学版), 2022, 42(9): 1216-1222.
|
|
Wang Y, Chen C, Chen G. Preliminary study of a BMP-2 releasing scaffold comprised of PLGA microspheres for guiding bone regeneration[J]. J Nanjing Med Univ (Nat Sci), 2022, 42(9): 1216-1222.
|
12 |
Nyberg E, Holmes C, Witham T, et al. Growth factor-eluting technologies for bone tissue engineering[J]. Drug Deliv Transl Res, 2016, 6(2): 184-194.
|
13 |
Wani TU, Khan RS, Rather AH, et al. Local dual delive-ry therapeutic strategies: using biomaterials for advan-ced bone tissue regeneration[J]. J Control Release, 2021, 339: 143-155.
|
14 |
Halloran D, Durbano HW, Nohe A. Bone morphogenetic protein-2 in development and bone homeostasis[J]. J Dev Biol, 2020, 8(3): 19.
|
15 |
Shi J, Dai W, Gupta A, et al. Frontiers of hydroxyapatite composites in bionic bone tissue engineering[J]. Materials (Basel), 2022, 15(23): 8475.
|
16 |
Rmaidi A, Zelzer M, Sindji L, et al. Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111852.
|
17 |
Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials[J]. Bioact Ma-ter, 2020, 6(2): 346-360.
|
18 |
Lee SK, Han CM, Park W, et al. Synergistically enhan-ced osteoconductivity and anti-inflammation of PLGA/β-TCP/Mg(OH)2 composite for orthopedic applications[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94: 65-75.
|
19 |
Yuan Y, Xu Y, Mao Y, et al. Three birds, one stone: an os-teo-microenvironment stage-regulative scaffold for bone defect repair through modulating early osteo-immunomodulation, middle neovascularization, and later osteogenesis[J]. Adv Sci (Weinh), 2024, 11(6): e2306428.
|