华西口腔医学杂志 ›› 2021, Vol. 39 ›› Issue (1): 108-114.doi: 10.7518/hxkq.2021.01.017
收稿日期:
2019-04-13
修回日期:
2020-06-20
出版日期:
2021-02-01
发布日期:
2021-03-02
通讯作者:
冯剑颖
E-mail:389385230@qq.com;twohorsejy@163.com
作者简介:
牟婷琛,住院医师,硕士,E-mail:基金资助:
Mou Tingchen1(), Feng Jianying2(
)
Received:
2019-04-13
Revised:
2020-06-20
Online:
2021-02-01
Published:
2021-03-02
Contact:
Feng Jianying
E-mail:389385230@qq.com;twohorsejy@163.com
Supported by:
摘要:
软骨干细胞是关节软骨中具有自我增殖、表面抗原表达特性及多向分化潜能的细胞,作为一种理想的干细胞来源,在干细胞治疗中有良好的应用前景。本文就软骨干细胞的标记、软骨分化信号通路、骨关节炎的临床治疗方法等研究进展进行综述。
中图分类号:
牟婷琛, 冯剑颖. 软骨干细胞标记及诱导分化的研究进展[J]. 华西口腔医学杂志, 2021, 39(1): 108-114.
Mou Tingchen, Feng Jianying. Research advances in cartilage stem cells markers and induced differentiation[J]. West China Journal of Stomatology, 2021, 39(1): 108-114.
1 | Grigolo B, Lisignoli G, Desando G, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit[J]. Tissue Eng Part C Methods, 2009, 15(4): 647-658. |
2 | Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions[J]. Maturitas, 2014, 78(3): 188-198. |
3 | Jiang YZ, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(4): 206-212. |
4 | Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population[J]. J Cell Sci, 2004, 117(Pt 6): 889-897. |
5 | Pretzel D, Linss S, Rochler S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage[J]. Arthritis Res Ther, 2011, 13(2): R64. |
6 | Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human arti-cular chondrocytes[J]. Arthritis Rheum, 2003, 48(5): 1315-1325. |
7 | Wei X, Yang X, Han ZP, et al. Mesenchymal stem cells: a new trend for cell therapy[J]. Acta Pharmacol Sin, 2013, 34(6): 747-754. |
8 | Tajbakhsh S. Stem cell: what's in a name[J]. Nat Rep Stem Cells, 2009. doi:10.1038/stemcells.2009.90. |
9 | Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective[J]. Biosci Rep, 2015, 35(2): e00191. |
10 | Mazor M, Cesaro A, Ali M, et al. Progenitor cells from cartilage: grade specific differences in stem cell marker expression[J]. Int J Mol Sci, 2017, 18(8): E1759. |
11 | Hynes K, Menicanin D, Mrozik K, et al. Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines[J]. Stem Cells Dev, 2014, 23(10): 1084-1096. |
12 | 刘子双一, 王德利, 阮狄克. 细胞核标记物5-乙炔基-2,脱氧尿嘧啶核苷的研究及应用进展[J]. 北京医学, 2014, 36(8): 474-477. |
Liu ZSY, Wang DL,Ruan DK. Research and application progress of nuclear markers 5-ethynyl-2,-deoxyuridine[J]. Beijing Med J, 2014, 36(8): 474-477. | |
13 | Kulesza A, Burdzinska A, Szczepanska I, et al. The mutual interactions between mesenchymal stem cells and myoblasts in an autologous co-culture model[J]. PLoS One, 2016, 11(8): e0161693. |
14 | Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647. |
15 | da Silva CL, Gonçalves R, Porada CD, et al. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics[J]. J Cell Physiol, 2009, 220(1): 102-111. |
16 | Shuai HL, Shi CZ, Lan JF, et al. Double labelling of human umbilical cord mesenchymal stem cells with Gd-DTPA and PKH26 and the influence on biological cha-racteristics of hUCMSCs[J]. Int J Exp Pathol, 2015, 96(1): 63-72. |
17 | Donega V, van Velthoven CT, Nijboer CH, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement[J]. PLoS One, 2013, 8(1): e51253. |
18 | Pratheesh MD, Gade NE, Nath A, et al. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model[J]. Cytotechnology, 2017, 69(6): 841-849. |
19 | Tao R, Sun TJ, Han YQ, et al. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells[J]. Eur Rev Med Pharmacol Sci, 2014, 18(8): 1127-1134. |
20 | Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers[J]. Arthritis Res Ther, 2004, 6(5): R422-R432. |
21 | Grogan SP, Barbero A, Diaz-Romero J, et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity[J]. Arthritis Rheum, 2007, 56(2): 586-595. |
22 | Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage[J]. PLoS One, 2010, 5(10): e13246. |
23 | Jahan E, Matsumoto A, Rafiq AM, et al. Fetal jaw movement affects Ihh signaling in mandibular condylar cartilage development: the possible role of Ihh as mechanotransduction mediator[J]. Arch Oral Biol, 2014, 59(10): 1108-1118. |
24 | Han XS, Zhuang YF, Zhang ZH, et al. Regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes in entheses of pig Achilles tendon[J]. Stem Cells Int, 2016, 2016: 8235172. |
25 | Wu MR, Chen GQ, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4: 16009. |
26 | Hinton RJ. Genes that regulate morphogenesis and grow-th of the temporomandibular joint: a review[J]. Dev Dyn, 2014, 243(7): 864-874. |
27 | Cheng L, Zhang CY, Li D, et al. Transforming growth factor-β1 (TGF-β1) induces mouse precartilaginous stem cell proliferation through TGF-β receptor Ⅱ (TGFRⅡ)-Akt-β-catenin signaling[J]. Int J Mol Sci, 2014, 15(7): 12665-12676. |
28 | Nishimura R, Hata K, Nakamura E, et al. Transcriptional network systems in cartilage development and disease[J]. Histochem Cell Biol, 2018, 149(4): 353-363. |
29 | Tian F, Wu MR, Deng LF, et al. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation[J]. J Bone Miner Res, 2014, 29(7): 1564-1574. |
30 | 马宏炜, 吴亚琼, 张海锋. Notch信号通路与骨形成和骨疾病[J]. 中华医学遗传学杂志, 2015, 32(2): 274-279. |
Ma HW, Wu YQ, Zhang HF. Notch signaling in bone formation and related skeletal diseases[J]. Chin J Med Genet, 2015, 32(2): 274-279. | |
31 | Tian Y, Xu Y, Fu Q, et al. Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1[J]. Mol Cell Endocrinol, 2015, 403: 30-38. |
32 | Shang XF, Wang JW, Luo ZL, et al. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest[J]. Sci Rep, 2016, 6: 25594. |
33 | Chen S, Lee BH, Bae Y. Notch signaling in skeletal stem cells[J]. Calcif Tissue Int, 2014, 94(1): 68-77. |
34 | Kohn A, Rutkowski TP, Liu ZY, et al. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9[J]. Bone Res, 2015, 3: 15021. |
35 | Liu Z, Ren Y, Mirando AJ, et al. Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance[J]. Osteoarthr Cartil, 2016, 24(4): 740-751. |
36 | Wen X, Li XG, Tang YB, et al. Chondrocyte FGFR3 re-gulates bone mass by inhibiting osteogenesis[J]. J Biol Chem, 2016, 291(48): 24912-24921. |
37 | Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease[J]. Genes Dev, 2015, 29(14): 1463-1486. |
38 | Buchtova M, Oralova V, Aklian A, et al. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage[J]. Biochim Biophys Acta, 2015, 1852(5): 839-850. |
39 | Schminke B, Miosge N. Cartilage repair in vivo: the role of migratory progenitor cells[J]. Curr Rheumatol Rep, 2014, 16(11): 461-469. |
40 | Tang QO, Shakib K, Heliotis M, et al. TGF-beta3: a potential biological therapy for enhancing chondrogenesis[J]. Expert Opin Biol Ther, 2009, 9(6): 689-701. |
41 | Szychlinska MA, Trovato FM, Di Rosa M, et al. Co-expression and Co-localization of cartilage glycoproteins CHI3L1 and lubricin in osteoarthritic cartilage: morphological, immunohistochemical and gene expression profiles[J]. Int J Mol Sci, 2016, 17(3): 359-378. |
42 | Bosserhoff AK, Hofmeister S, Ruedel A, et al. DCC is expressed in a CD166-positive subpopulation of chondrocytes in human osteoarthritic cartilage and modulates CRE activity[J]. Int J Clin Exp Pathol, 2014, 7(5): 1947-1956. |
43 | Zhang W, Ouyang HW, Dass CR, et al. Current research on pharmacologic and regenerative therapies for osteoarthritis[J]. Bone Res, 2016, 4: 15040. |
44 | Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis[J]. Sci Transl Med, 2011, 3(101): 101ra93. |
45 | Rahmati M, Nalesso G, Mobasheri A, et al. Aging and osteoarthritis: central role of the extracellular matrix[J]. Ageing Res Rev, 2017, 40: 20-30. |
46 | Filardo G, Kon E, Roffi A, et al. Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(9): 2459-2474. |
47 | Abrams GD, Frank RM, Fortier LA, et al. Platelet-rich plasma for articular cartilage repair[J]. Sports Med Arthrosc Rev, 2013, 21(4): 213-219. |
48 | Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon[J]. Orthopedics, 2016, 39(4): e715-e723. |
49 | Dhollander AA, De Neve F, Almqvist KF, et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19(4): 536-542. |
50 | Hached F, Vinatier C, Le Visage C, et al. Biomaterial-assisted cell therapy in osteoarthritis: from mesenchymal stem cells to cell encapsulation[J]. Best Pract Res Clin Rheumatol, 2017, 31(5): 730-745. |
51 | Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules[J]. Drug Deliv Transl Res, 2016, 6(2): 105-120. |
52 | Wang Y, Yuan M, Guo QY, et al. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis[J]. Cell Transplant, 2015, 24(9): 1661-1678. |
53 | Dall'Oca C, Cengarle M, Costanzo A, et al. Current concepts in treatment of early knee osteoarthritis and osteochondral lesions; the role of biological augmentations[J]. Acta Biomed, 2017, 88(4S): 5-10. |
54 | Tofiño-Vian M, Guillén MI, Alcaraz MJ. Extracellular vesicles: a new therapeutic strategy for joint conditions[J]. Biochem Pharmacol, 2018, 153: 134-146. |
55 | Xu SC, Liu HL, Xie YZ, et al. Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: a Meta-analysis[J]. Cytotherapy, 2015, 17(10): 1342-1352. |
56 | Filardo G, Perdisa F, Roffi A, et al. Stem cells in articular cartilage regeneration[J]. J Orthop Surg Res, 2016, 11: 42. |
57 | Filardo G, Madry H, Jelic M, et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(8): 1717-1729. |
58 | Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway[J]. Ultrasound Med Biol, 2014, 40(6): 1177-1186. |
[1] | 王若欣, 刘倩, 何峰, 张勉, 王贺林. 生长分化因子11对小鼠颞下颌关节骨关节炎髁突软骨细胞脂肪化的影响[J]. 华西口腔医学杂志, 2022, 40(1): 14-21. |
[2] | 肖勉, 胡智慧, 江恒华, 房维, 龙星. 破骨细胞分化在颞下颌关节骨关节炎发生中的作用[J]. 华西口腔医学杂志, 2021, 39(4): 398-404. |
[3] | 雷可昕, 白贺天, 杨淞月, 李敬, 陈谦明. 环状RNA与口腔鳞状细胞癌研究进展[J]. 华西口腔医学杂志, 2020, 38(4): 425-430. |
[4] | 潘光华1 李春洁2 李双君2 赵洪伟2 陈海燕3. 椅旁循证在颞下颌关节骨关节炎治疗中的应用研究[J]. 华西口腔医学杂志, 2012, 30(6): 624-627. |
[5] | 李春洁 贾源源 张绮 史宗道 陈海燕. 盐酸氨基葡萄糖片联合玻璃酸钠治疗颞下颌关节骨关节炎的临床随机对照试验[J]. 华西口腔医学杂志, 2011, 29(06): 632-635. |
[6] | 杨峰,史宗道. 用木瓜蛋白酶建立兔颞颌关节骨关节炎模型的研究[J]. 华西口腔医学杂志, 2002, 20(05): 330-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||