1 |
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820.
|
2 |
Dye BA. Global periodontal disease epidemiology[J]. Periodontol 2000, 2012, 58(1): 10-25.
|
3 |
Ivanovski S, Vaquette C, Gronthos S, et al. Multiphasic scaffolds for periodontal tissue engineering[J]. J Dent Res, 2014, 93(12): 1212-1221.
|
4 |
Park CH, Kim KH, Lee YM, et al. Advanced enginee-ring strategies for periodontal complex regeneration[J]. Materials (Basel), 2016, 9(1): 57.
|
5 |
Bright R, Hynes K, Gronthos S, et al. Periodontal ligament-derived cells for periodontal regeneration in animal models:a systematic review[J]. J Periodontal Res, 2015, 50(2): 160-172.
|
6 |
Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7): 904-914.
|
7 |
Xu XY, Li X, Wang J, et al. Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations[J]. Stem Cells Transl Med, 2019, 8(4): 392-403.
|
8 |
Xia Y, Tang HN, Wu RX, et al. Cell Responses to conditioned media produced by patient-matched stem cells derived from healthy and inflamed periodontal ligament tissues[J]. J Periodontol, 2016, 87(5): e53-e63.
|
9 |
Tang HN, Xia Y, Yu Y, et al. Stem cells derived from “inflamed” and healthy periodontal ligament tissues and their sheet functionalities:a patient-matched comparison[J]. J Clin Periodontol, 2016, 43(1): 72-84.
|
10 |
Mulvihill EE, Burke AC, Huff MW. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis[J]. Annu Rev Nutr, 2016, 36: 275-299.
|
11 |
Jin L, Zeng W, Zhang F, et al. Naringenin ameliorates acute inflammation by regulating intracellular cytokine degradation[J]. J Immunol, 2017, 199(10): 3466-3477.
|
12 |
Du G, Jin L, Han X, et al. Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis[J]. Cancer Res, 2009, 69(7): 3205-3212.
|
13 |
Bodet C, La VD, Epifano F, et al. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models[J]. J Periodontal Res, 2008, 43(4): 400-407.
|
14 |
Yu DH, Ma CH, Yue ZQ, et al. Protective effect of naringenin against lipopolysaccharide-induced injury in normal human bronchial epithelium via supperssion of MA-PK signaling[J]. Inflammation, 2015, 38(1): 195-204.
|
15 |
Chtourou Y, Fetoui H, Jemai R, et al. Naringenin redu-ces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway[J]. Eur J Pharmacol, 2015, 746: 96-105.
|
16 |
Li YR, Chen DY, Chu CL, et al. Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis[J]. J Nutr Biochem, 2015, 26(12): 1467-1478.
|
17 |
Eanes L, Patel YM. Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells[J]. Biochim Open, 2016, 3: 64-71.
|
18 |
Zhang L, He H, Zhang M, et al. Assessing the effect and related mechanism of naringenin on the proliferation, osteogenic differentiation and endothelial differentiation of human periodontal ligament stem cells[J]. BiochemBiophys Res Commun, 2021, 534: 337-342.
|
19 |
Wang X, Wang C, Gou W, et al. The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model[J]. Stem Cell Re Ther, 2018, 9(1): 272.
|
20 |
Kortesidis A, Zannettino A, Isenmann S, et al. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells[J]. Blood, 2005, 105(10): 3793-3801.
|
21 |
Havens AM, Chiu E, Taba M, et al. Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease[J]. J Periodontol, 2008, 79(5): 845-853.
|
22 |
林永盛, 王丰芝, 雷晓静, 等. 基质细胞衍生因子-1对炎症和正常来源的人牙周膜干细胞成骨分化能力的影响[J]. 华西口腔医学杂志, 2019, 37(5): 469-475.
|
|
Lin YS, Wang FZ, Lei XJ, et al. Comparative study with the effect of stromal cell derived factor-1 on osteogenic differentiation of human healthy and inflammatory pe-riodontal ligament stem cells[J]. West China J Stomatol, 2019, 37(5): 469-475.
|
23 |
Pang Y, Yuan X, Guo J, et al. The effect of liraglutide on the proliferation, migration, and osteogenic differentiation of human periodontal ligament cells[J]. J Periodontal Res, 2019, 54(2): 106-114.
|
24 |
Zhang P, Zhang Y, Liu Q, et al. 1,25 (OH)2D3 supports theosteogenic differentiation of hPDLSCs under inflammatory conditions through inhibiting PLAP-1 expression transcriptionally[J]. Int Immunopharmacol, 2020, 78: 105998.
|
25 |
Chen YC, Ninomiya T, Hosoya A, et al. 1α, 25-Dihydroxyvitamin D3 inhibits osteoblastic differentiation of mouse periodontal fibroblasts[J]. Arch Oral Biol, 2012, 57(5): 453-459.
|
26 |
Zhang Z, Shuai Y, Zhou F, et al. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis[J]. Int J Med Sci, 2020, 17(5): 558-567.
|
27 |
Rather HA, Jhala D, Vasita R. Dual functional approa-ches for osteogenesis coupled angiogenesis in bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109761.
|
28 |
Zoellner H, Hunter N. Vascular expansion in chronic periodontitis[J]. J Oral Pathol Med, 1991, 20(9): 433-437.
|
29 |
Mousavi A. CXCL12/CXCR4 signal transduction in di-seases and its moleculear approaches in targeted-therapy[J]. Immunol Lett, 2020, 217: 91-115.
|
30 |
Havens AM, Chiu E, Taba M, et al. Stromalderived factor-1alpha (CXCL12) levels increase in periodontal di-sease[J]. J Periodontol, 2008, 79(5): 845-853.
|
31 |
Wei K, Xie Y, Chen T, et al. ERK1/2 signaling mediated naringin-induced osteogenic differentiation of immortali-zed human periodontal ligament stem cells[J]. Biochem Biophys Res Commun, 2017, 489(3): 319-325.
|
32 |
Wang H, Li C, Li J, et al. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells[J]. Iran J Basic Med Sci, 2017, 20(4): 408-414.
|
33 |
Hämäläinen M, Nieminen R, Vuorela P, et al. Anti-inflammatory effects of flavonoids:genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation a-long with their inhibitory effect on iNOS expression and NO production in activated macrophages[J]. Mediators Inflamm, 2007, 2007: 45673.
|