1 |
邱蔚六. 口腔颌面部缺损修复重建的现状和展望[J]. 中国修复重建外科杂志, 2005, 19(10): 769-772.
|
|
Qiu WL. Current situation and prospect of reconstruction of oral and maxillofacial defects[J]. Chin J Repar Reconstr Surg, 2005, 19(10): 769-772.
|
2 |
Wang YY, Naleway SE, Wang B. Biological and bioinspired materials: structure leading to functional and mechanical performance[J]. Bioact Mater, 2020, 5(4): 745-757.
|
3 |
Armiento AR, Hatt LP, Sanchez Rosenberg G, et al. Functional biomaterials for bone regeneration: a lesson in complex biology[J]. Adv Func Mater, 2020, 30(44): 1909874.
|
4 |
Du YY, Guo JL, Wang JL, et al. Hierarchically designed bone scaffolds: from internal cues to external stimuli[J]. Biomaterials, 2019, 218: 119334.
|
5 |
Wan CY, Chen BQ. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites[J]. Nanoscale, 2011, 3(2): 693-700.
|
6 |
Khang W, Feldman S, Hawley CE, et al. A multi-center study comparing dual acid-etched and machined-surfaced implants in various bone qualities[J]. J Periodontol, 2001, 72(10): 1384-1390.
|
7 |
Zhang WJ, Wang GC, Liu Y, et al. The synergistic effect of hierarchical Micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials, 2013, 34(13): 3184-3195.
|
8 |
Liu FW, Li YF, Liang JF, et al. Effects of Micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep[J]. Clin Implant Dent Relat Res, 2019, 21(2): 377-385.
|
9 |
Wu S, Liu X, Yeung KW, et al. Biomimetic porous scaffolds for bone tissue engineering[J]. Mater Sci Eng Rep, 2014, 80: 1-36.
|
10 |
Palmer LC, Newcomb CJ, Kaltz SR, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel[J]. Chem Rev, 2008, 108(11): 4754-4783.
|
11 |
O'Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23(4): 879-890.
|
12 |
Lin WC, Chuang CC, Yao C, et al. Effect of cobalt precursors on cobalt-hydroxyapatite used in bone regeneration and MRI[J]. J Dent Res, 2020, 99(3): 277-284.
|
13 |
Qiao YQ, Zhang WJ, Tian P, et al. Stimulation of bone growth following zinc incorporation into biomaterials[J]. Biomaterials, 2014, 35(25): 6882-6897.
|
14 |
Zhang WJ, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of HIF-1α[J]. Adv Healthc Mater, 2016, 5(11): 1299-1309.
|
15 |
Bunpetch V, Zhang XA, Li T, et al. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect[J]. Biomaterials, 2019, 192: 323-333.
|
16 |
Kong YY, Hu XL, Zhong YQ, et al. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling[J]. Stem Cell Res Ther, 2019, 10(1): 378.
|
17 |
Bakhit A, Kawashima N, Hashimoto K, et al. Strontium ranelate promotes odonto-/osteogenic differentiation/mi-neralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo[J]. Sci Rep, 2018, 8(1): 9224.
|
18 |
Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation[J]. Acta Biomater, 2014, 10(6): 2834-2842.
|
19 |
Zhang YF, Xu JK, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016, 22(10): 1160-1169.
|
20 |
Lin SH, Yang GZ, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration[J]. Adv Sci (Weinh), 2019, 6(12): 1900209.
|
21 |
Wang H, Zeng X, Pang L, et al. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nano-sheets with 3D printed bioactive borosilicate glass scaffolds[J]. Chem Eng J, 2020, 396: 125081.
|
22 |
Bari A, Bloise N, Fiorilli S, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration[J]. Acta Biomater, 2017, 55: 493-504.
|
23 |
Kargozar S, Lotfibakhshaiesh N, Ai J, et al. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities[J]. Acta Biomater, 2017, 58: 502-514.
|
24 |
Zhang WJ, Cao HL, Zhang XC, et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016, 8(9): 5291-5301.
|
25 |
Tang YM, Lin SH, Yin S, et al. In situ gas foaming based on magnesium particle degradation: a novel approach to fabricate injectable macroporous hydrogels[J]. Biomaterials, 2020, 232: 119727.
|
26 |
Wu CT, Chen ZT, Wu QJ, et al. Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration[J]. Biomaterials, 2015, 71: 35-47.
|
27 |
Sun JL, Jiao K, Niu LN, et al. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration[J]. Biomaterials, 2017, 113: 203-216.
|
28 |
Chen Z, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Mater Today, 2016, 19(6): 304-321.
|
29 |
Liu JZ, Huang QF, Wang XD, et al. Early loading of splinted implants in posterior mandible: three-year results of a prospective multicenter study[J]. Clin Oral Implants Res, 2019, 30(10): 1049-1058.
|
30 |
Zhou JF, Huang QF, Wang XD, et al. Early loading of splinted implants in the posterior mandible: a prospective multicentre case series[J]. J Clin Periodontol, 2016, 43(3): 298-304.
|
31 |
Yang J, Yamato M, Kohno C, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds[J]. Biomaterials, 2005, 26(33): 6415-6422.
|
32 |
Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7): 904-914.
|
33 |
Lu YZ, Zhang WJ, Wang J, et al. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application[J]. Int J Oral Sci, 2019, 11(2): 90-102.
|
34 |
Matsuda N, Shimizu T, Yamato M, et al. Tissue engineering based on cell sheet technology[J]. Adv Mater, 2007, 19(20): 3089-3099.
|
35 |
Kawecki F, Clafshenkel WP, Fortin M, et al. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies[J]. Adv Healthc Mater, 2018, 7(6): e1700919.
|
36 |
Yang B, Chen G, Li J, et al. Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold[J]. Biomaterials, 2012, 33(8): 2449-2461.
|
37 |
Tsumanuma Y, Iwata T, Washio K, et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model[J]. Biomaterials, 2011, 32(25): 5819-5825.
|
38 |
Vaquette C, Saifzadeh S, Farag A, et al. Periodontal tissue engineering with a multiphasic construct and cell sheets[J]. J Dent Res, 2019, 98(6): 673-681.
|
39 |
Zhou YF, Chen FL, Ho ST, et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts[J]. Biomaterials, 2007, 28(5): 814-824.
|
40 |
Shan XL, Hu DS. Bone engineering by cell sheet technology to repair mandibular defects[J]. Exp Ther Med, 2017, 14(5): 5007-5011.
|
41 |
Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10(455): eaaf3227.
|
42 |
Ito A, Hibino E, Kobayashi C, et al. Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force[J]. Tissue Eng, 2005, 11(3/4): 489-496.
|
43 |
Ito A, Ino K, Hayashida M, et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force[J]. Tissue Eng, 2005, 11(9/10): 1553-1561.
|
44 |
Ito A, Takizawa Y, Honda H, et al. Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells[J]. Tissue Eng, 2004, 10(5/6): 833-840.
|
45 |
Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43): 1703795.
|