华西口腔医学杂志 ›› 2020, Vol. 38 ›› Issue (1): 59-68.doi: 10.7518/hxkq.2020.01.011
收稿日期:
2019-06-21
修回日期:
2019-09-19
出版日期:
2020-02-01
发布日期:
2020-02-06
通讯作者:
周智
E-mail:500119@hospital.cqmu.edu.cn
作者简介:
赵丹,硕士,E-mail: 2017110916@stu.cqmu.edu.cn
基金资助:
Zhao Dan,Li Yueheng,Yang Zhengyan,Cai Ting,Wu Xiaoyan,Xia Yu,Zhou Zhi()
Received:
2019-06-21
Revised:
2019-09-19
Online:
2020-02-01
Published:
2020-02-06
Contact:
Zhi Zhou
E-mail:500119@hospital.cqmu.edu.cn
Supported by:
摘要:
目的 系统评价干细胞对面神经缺损的修复效果。方法 在Pubmed、Cochrane Library、Web of Science、Embase、Scopus及中国生物医学文献数据库检索关于评价干细胞对动物面神经再生效果的所有原始研究,2名专业人员独立完成文献筛选、数据提取及偏倚风险评估。使用RevMan 5.3软件及随机效应模型进行统计分析,分析结果以均数差(MD)及95%可信区间(CI)的形式呈现。对面神经的功能性评估(胡须运动评分、面瘫评分)及组织学评估(有髓纤维密度、纤维直径、髓鞘厚度、G比值)结果进行Meta分析。结果 从6个数据库共检索出4 614篇文献,15篇被纳入了Meta分析。干细胞组的胡须运动评分、面瘫评分、有髓纤维密度、髓鞘厚度均高于非干细胞组(P<0.05),G比值小于非干细胞组(P=0.001),纤维直径二者无统计学差异(P=0.08)。结论 干细胞具有促进面神经再生的潜能。
中图分类号:
赵丹,李月恒,杨正艳,蔡婷,吴晓艳,夏雨,周智. 干细胞局部应用对缺损面神经再生效果的系统评价[J]. 华西口腔医学杂志, 2020, 38(1): 59-68.
Zhao Dan,Li Yueheng,Yang Zhengyan,Cai Ting,Wu Xiaoyan,Xia Yu,Zhou Zhi. Effect of the local application of stem cells on repairing facial nerve defects: a systematic review[J]. West China Journal of Stomatology, 2020, 38(1): 59-68.
表 1
纳入研究的基本信息
作者及年份 | 动物种类 | 基线情况 | 总样 | 神经类型 | 间隙长 | 修复材料 | 细胞类型 | 细胞 | 随访 |
---|---|---|---|---|---|---|---|---|---|
本量 | 度/mm | 或方法 | 剂量 | 时间 | |||||
Abbas 2016[ | SD大鼠 | 雄性 | 12 | 面神经主干, | 坐骨神经 | ADSCs | 1×106 | 90 d | |
颊支 | |||||||||
Batioglu-Karaaltin | Wistar大鼠 | 雌性,350~380 g | 27 | 面神经主干 | 2 | 导管 | HOSCs | 8×106 | 10周 |
2016[ | |||||||||
Chen 2018[ | 新西兰兔 | 7~8月,雄性, | 45 | 颊支 | 导管 | DPSCs | 5×106 | 10周 | |
(3.0±0.5) kg | |||||||||
Cho 2010[ | 豚鼠 | 32 | 面神经主干 | 0 | 神经缝合 | N-iHMSCs | 1×105 | 6周 | |
Costa 2013[ | Wistar大鼠 | 成年,雄性,250~300 g | 35 | 下颌缘支 | 5 | PGA导管 | BMSCs | 4×105 | 6周 |
Ghoreishian 2013[ | 伊朗杂种犬 | 20~25 kg | 7 | 颞支 | >7 | Gore-Tex导管 | ADSCs | 2×107 | 12周 |
Guo 2009[ | 家兔 | 任何性别,2~3 kg | 36 | 颊支 | 10 | 壳聚糖导管 | NSCs | 1×106 | 12周 |
Kwon 2009[ | SD大鼠 | 20 | 面神经主干 | >5 | 硅胶导管 | ADSCs | 8周 | ||
Ma 2017[ | SD大鼠 | 成年,雌性,200~220 g | 100 | 颊支 | 8 | 胶原导管 | NS/PCs | 1×106 | 12周 |
Matsumine 2014[ | Lewis大鼠 | 8周,200~250 g | 25 | 颊支 | 7 | 硅胶导管 | DFATs | 5×104 | 13周 |
Matsumine 2017[ | Lewis大鼠 | 8周,雄性,200~250 g | 30 | 颊支 | 7 | 硅胶导管 | SVF | 1×103 | 13周 |
1×105 | |||||||||
1×107 | |||||||||
Salomone 2013[ | Wistar大鼠 | 雄性,250~300 g | 48 | 下颌缘支 | 3 | 硅胶导管 | BMSCs | 4×105 | 6周 |
Sasaki 2008[ | Lewis大鼠 | 8周 | 38 | 颊支 | 7 | 硅胶导管 | DPSCs | 1×105 | 12 d |
Sasaki 2011[ | Lewis大鼠 | 8周 | 10 | 颊支 | 7 | PLGA导管 | DPSCs | 5×105 | 5 d |
Sasaki 2014[ | Lewis大鼠 | 成年,雄性 | 34 | 颊支 | 7 | 硅胶导管 | DPSCs | 1×105 | 13周 |
Satar 2009[ | SD大鼠 | 12~16周,雌性, | 15 | 颊支 | 0 | 神经缝合 | BMSCs | 6月 | |
220~228 g | |||||||||
Satar 2010[ | SD大鼠 | 12~16周,雌性, | 3 | 颊支 | 0 | 神经缝合 | BMSCs | 9月 | |
220~228 g | |||||||||
Shi 2009[ | SD大鼠 | 成年,雌性,200~250 g | 96 | 颊支 | 8 | PLGA导管 | NSCs,SCs | 1×105 | 12周 |
Shi 2012[ | SD大鼠 | 雌性,200~250 g | 20 | 颊支 | >5 | PLGA导管 | NSCs | 12周 | |
Shimizu 2018[ | Lewis大鼠 | 8周,雄性,200~250 g | 24 | 颊支 | 7 | PGA-胶原导管 | ADSCs,SVF | 1×105 | 13周 |
Sun 2011(1) [ | SD大鼠 | 5~6周,雌性,100~150 g | 40 | 颊支 | 8 | 去细胞动脉导管 | ADSCs | 1×105 | 8周 |
Sun 2011(2) [ | SD大鼠 | 年轻,雌性,100~120 g | 60 | 颊支 | 8 | 去细胞动脉导管 | ADSCs,SCs | 5×105 | 8周 |
Sun 2018[ | 新西兰兔 | 4月,雌性,3.0~3.5 kg | 32 | 颊支 | 10 | 去细胞坐骨神经 | ADSCs | 2×104 | 8周 |
Wang 2011[ | 新西兰兔 | 成年,雌性,2.5~3.2 kg | 54 | 颊支 | 10 | 自体静脉导管 | BMSCs | 3×106 | 16周 |
Wang 2012[ | 新西兰兔 | 任意性别,2.5~3.0 kg | 16 | 颊支 | 7 | 硅胶导管 | DPSCs | 1×104 | |
Watanabe 2017[ | Lewis 大鼠 | 8周,雄性 | 77 | 颊支 | 7 | 硅胶导管 | ADSCs,SCs | 1×105 | 13周 |
Yan 2004[ | 新西兰兔 | 任意性别,2.0~3.0 kg | 22 | 面神经主干 | 6 | 自体筋膜 | NSCs | 6周 | |
Yu 2005[ | 新西兰兔 | 15 | 颊支 | >12 | 硅胶导管 | BMSCs | 1.6×104 | 16周 | |
Zhang 2008[ | 新西兰兔 | 成年,2.0~2.5 kg | 39 | 面神经主干 | 5 | HA-胶原导管 | NSCs | 4×106 | 12周 |
Zhang 2014[ | 新西兰兔 | 成年,2.5~3.5 kg | 20 | 颊支 | 硅胶导管 | DPSCs | 3月 | ||
Zhang 2018(1) [ | SD大鼠 | 成年,雌性, | 颊支 | 6 | AxoGuard导管 | GMSCs, | 5×105 | 12周 | |
200~250 g | iNCSCs | ||||||||
Zhang 2018(2) [ | SD大鼠 | 8周,雌性,200~250 g | 颊支 | 5 | 3D打印导管 | GMSCs | 12周 |
[1] | 王美青 . 口腔解剖生理学[M]. 7版. 北京: 人民卫生出版社, 2012: 153-156. |
Wang MQ. Oral anatomy and physiology[M]. 7th ed. Beijing: People’s Medical Publishing House, 2012: 153-156. | |
[2] | Euler de Souza Lucena E, Guzen FP, Lopes de Paiva Cavalcanti JR , et al. Experimental considerations concerning the use of stem cells and tissue engineering for facial nerve regeneration: a systematic review[J]. J Oral Maxillofac Surg, 2014,72(5):1001-1012. |
[3] | Kerrebijn JD, Freeman JL . Facial nerve reconstruction: outcome and failures[J]. J Otolaryngol, 1998,27(4):183-186. |
[4] | Millesi H . Techniques for nerve grafting[J]. Hand Clin, 2000,16(1):73-91. |
[5] | Shi Y, Zhou L, Tian J , et al. Transplantation of neural stem cells overexpressing Glia-derived neurotrophic factor promotes facial nerve regeneration[J]. Acta Otolaryngol, 2009,129(8):906-914. |
[6] | Wang TV, Delaney S, Pepper JP . Current state of stem cell-mediated therapies for facial nerve injury[J]. Curr Opin Otolaryngol Head Neck Surg, 2016,24(4):285-293. |
[7] | Batioglu-Karaaltin A, Karaaltin MV, Oztel ON , et al. Human olfactory stem cells for injured facial nerve reconstruction in a rat model[J]. Head Neck, 2016,38(Suppl 1):E2011-E2020. |
[8] | Kim SU, de Vellis J . Stem cell-based cell therapy in neurological diseases: a review[J]. J Neurosci Res, 2009,87(10):2183-2200. |
[9] | Fu KY, Dai LG, Chiu IM , et al. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells[J]. Artif Organs, 2011,35(4):363-372. |
[10] | Parker MA, Anderson JK, Corliss DA , et al. Expression profile of an operationally-defined neural stem cell clone[J]. Exp Neurol, 2005,194(2):320-332. |
[11] | Bunge RP . Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration[J]. Curr Opin Neurobiol, 1993,3(5):805-809. |
[12] | Zuk PA, Zhu M, Ashjian P , et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002,13(12):4279-4295. |
[13] | Meliga E, Strem BM, Duckers HJ , et al. Adipose-derived cells[J]. Cell Transplant, 2007,16(9):963-970. |
[14] | Gomillion CT, Burg KJ . Stem cells and adipose tissue engineering[J]. Biomaterials, 2006,27(36):6052-6063. |
[15] | Sun F, Zhou K, Mi WJ , et al. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model[J]. Neurosci Lett, 2011,499(2):104-108. |
[16] | Guo BF, Dong MM . Application of neural stem cells in tissue-engineered artificial nerve[J]. Otolaryngol Head Neck Surg, 2009,140(2):159-164. |
[17] | Sasaki R, Matsumine H, Watanabe Y , et al. Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats[J]. Plast Reconstr Surg, 2014,134(5):970-978. |
[18] | Sasaki R, Aoki S, Yamato M , et al. Tubulation with dental pulp cells promotes facial nerve regeneration in rats[J]. Tissue Eng Part A, 2008,14(7):1141-1147. |
[19] | Zhang QZ, Nguyen PD, Shi SH , et al. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration[J]. Sci Rep, 2018,8:6634. |
[20] | Shimizu M, Matsumine H, Osaki H , et al. Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration[J]. Wound Repair Regen, 2018,26(6):446-455. |
[21] | Moher D, Liberati A, Tetzlaff J , et al. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA statement[J]. Ann Intern Med, 2009,151(4):264-269. |
[22] | 刘鸣 . 系统评价、Meta-分析设计与实施方法[M]. 北京: 人民卫生出版社, 2011: 85-90. |
Liu M. The design and implementation method of systematic review and Meta-analysis[M]. Beijing: People’s Medical Publishing House, 2011: 85-90. | |
[23] | Hooijmans CR, Rovers MM, de Vries RB , et al. SYRCLE’s risk of Bias tool for animal studies[J]. BMC Med Res Methodol, 2014,14:43. |
[24] | Abbas OL, Borman H, Uysal ÇA , et al. Adipose-derived stem cells enhance axonal regeneration through cross-facial nerve grafting in a rat model of facial paralysis[J]. Plast Reconstr Surg, 2016,138(2):387-396. |
[25] | 陈彪, 张睿, 张文娟 , 等. 牙髓干细胞对兔面神经损伤的修复作用及其机制[J]. 吉林大学学报(医学版), 2018,44(3):504-509, 695. |
Chen B, Zhang R, Zhang WJ , et al. Repair effect of dental pulp stem cells on facial nerve injury in rabbits and its mechanism[J]. J Jilin Univ Med Ed, 2018,44(3):504-509, 695. | |
[26] | Cho HH, Jang S, Lee SC , et al. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model[J]. Laryngoscope, 2010,120(5):907-913. |
[27] | Costa HJ, Bento RF, Salomone R , et al. Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration[J]. Brain Res, 2013,1510:10-21. |
[28] | Ghoreishian M, Rezaei M, Beni BH , et al. Facial nerve repair with gore-tex tube and adipose-derived stem cells: an animal study in dogs[J]. J Oral Maxillofac Surg, 2013,71(3):577-587. |
[29] | Kwon SK, Song JJ, Cho CG , et al. Regeneration of facial nerve using mesenchymal stem cells in facial nerve palsy animal model[J]. Tissue Eng Regen Med, 2009,6(1):300-306. |
[30] | Ma FK, Zhu TM, Xu F , et al. Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration[J]. Acta Biomater, 2017,50:188-197. |
[31] | Matsumine H, Takeuchi Y, Sasaki R , et al. Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model[J]. Plast Reconstr Surg, 2014,134(4):686-697. |
[32] | Matsumine H, Numakura K, Climov M , et al. Facial-nerve regeneration ability of a hybrid artificial nerve conduit containing uncultured adipose-derived stromal vascular fraction: an experimental study[J]. Microsurgery, 2017,37(7):808-818. |
[33] | Salomone R, Bento RF, Costa HJ , et al. Bone marrow stem cells in facial nerve regeneration from isolated stumps[J]. Muscle Nerve, 2013,48(3):423-429. |
[34] | Sasaki R, Aoki S, Yamato M , et al. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration[J]. J Tissue Eng Regen Med, 2011,5(10):823-830. |
[35] | Satar B, Karahatay S, Kurt B , et al. Repair of transected facial nerve with mesenchymal stromal cells: histopathologic evidence of superior outcome[J]. Laryngoscope, 2009,119(11):2221-2225. |
[36] | Satar B, Oztas E, Hidir Y . Promoted regeneration of transected facial nerve branches using mesenchymal stromal cells in relationship with apoptosis: 9-month results[J]. J Int Adv Otology, 2010,6(2):160-166 |
[37] | 施勇, 周梁, 田洁 , 等. 神经干细胞移植到神经导管修复大鼠面神经缺损的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2012,26(22):1040-1042. |
Shi Y, Zhou L, Tian J , et al. Transplanting neural stem cells in nerve conduit to promote rats facial nerve regeneration[J]. J Clin Otorhinolaryngol Head Neck Surg, 2012,26(22):1040-1042. | |
[38] | Sun F, Zhou K, Mi WJ , et al. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats[J]. Biomaterials, 2011,32(32):8118-8128. |
[39] | 孙妍娜, 张荣明, 毛旭 , 等. 复合脂肪来源干细胞的脱细胞异种神经联合富血小板血浆修复兔面神经损伤的实验研究[J]. 中国修复重建外科杂志, 2018,32(6):736-744. |
Sun YN, Zhang RM, Mao X , et al. Research of acellular xenogeneic nerve combined with adipose-derived stem cells and platelet rich plasma in repair of rabbit facial nerve injury[J]. Chin J Reparat Reconstr Surg, 2018,32(6):736-744. | |
[40] | Wang XM, Luo E, Li YF , et al. Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination[J]. Brain Res, 2011,1383:71-80. |
[41] | 王艳梅, 木合塔尔·霍加, 庄友梅 , 等. TGF-β3与牙髓干细胞联合应用对兔面神经损伤修复的作用[J]. 国际生物医学工程杂志, 2012,35(3):160-164. |
Wang YM, Muhetaer HJ, Zhuang YM , et al. Effects of TGF-β3 combined with dental pulp stem cells on the repair of rabbit facial nerve injury[J]. Int J Biomed Eng, 2012,35(3):160-164. | |
[42] | Watanabe Y, Sasaki R, Matsumine H , et al. Undifferentiated and differentiated adipose-derived stem cells improve nerve regeneration in a rat model of facial nerve defect[J]. J Tissue Eng Regen Med, 2017,11(2):362-374. |
[43] | 闫长祥, 安沂华, 历俊华 , 等. 神经干细胞与自体筋膜联合修复家兔面神经损伤[J]. 中国康复理论与实践, 2004,10(1):21-22. |
Yan CX, An YH, Li JH , et al. Research on repairing facial nerve injury of rabbits by neural stem cells and autologous fasia[J]. Chin J Rehabil Theory Pract, 2004,10(1):21-22. | |
[44] | 余国建, 胡勤刚, 周炳荣 , 等. 兔骨髓间充质干细胞修复面神经缺损的初步研究[J]. 口腔医学纵横, 2005,21(3):273-275. |
Yu GJ, Hu QG, Zhou BR , et al. The pilot study of regeneration of facial nerve defect with rabbit bone marrow-derived mesenchymal stem cells[J]. J Comprehen Stomatol, 2005,21(3):273-275. | |
[45] | Zhang H, Wei YT, Tsang KS , et al. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model[J]. J Transl Med, 2008,6:67. |
[46] | 张晓莉, 玛衣努尔•艾赛提, 白尔娜•吾守尔 , 等. TGF-β3和牙髓干细胞修复损伤面神经效果的评价[J]. 口腔医学研究, 2014,30(6):504-508. |
Zhang XL, Mayinuer EST, Baierna WSE , et al. Effects of TGF-β3 and dental pulp stem cells to repair of facial nerve injury[J]. J Oral Sci Res, 2014,30(6):504-508. | |
[47] | Zhang QZ, Nguyen PD, Shi SH , et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats[J]. Mol Neurobiol, 2018,55(8):6965-6983. |
[48] | Fansa H, Keilhoff G . Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects[J]. Neurol Res, 2004,26(2):167-173. |
[49] | Schmalenberg KE, Uhrich KE . Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration[J]. Biomaterials, 2005,26(12):1423-1430. |
[50] | Evans GR . Peripheral nerve injury: a review and approach to tissue engineered constructs[J]. Anat Rec, 2001,263(4):396-404. |
[51] | Fu SY, Gordon T . The cellular and molecular basis of peripheral nerve regeneration[J]. Mol Neurobiol, 1997,14(1/2):67-116. |
[52] | Nguyen QT, Sanes JR, Lichtman JW . Pre-existing pathways promote precise projection patterns[J]. Nat Neurosci, 2002,5(9):861-867. |
[53] | Jurecka W, Ammerer HP, Lassmann H . Regeneration of a transected peripheral nerve[J]. Acta Neuropathol, 1975,32(4):299-312. |
[54] | Cattin AL, Burden JJ, van Emmenis L , et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves[J]. Cell, 2015,162(5):1127-1139. |
[55] | McDonald D, Cheng C, Chen YY , et al. Early events of peripheral nerve regeneration[J]. Neuron Glia Biol, 2006,2(2):139-147. |
[56] | Parrinello S, Napoli I, Ribeiro S , et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent schwann cell sorting[J]. Cell, 2010,143(1):145-155. |
[57] | Terenghi G, Tohill M . Stem-cell plasticity and therapy for injuries of the peripheral nervous system[J]. Biotechnol Appl Biochem, 2004,40(1):17. |
[58] | Flax JD, Aurora S, Yang C , et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes[J]. Nat Biotechnol, 1998,16(11):1033-1039. |
[59] | Johnson T, O’Neill A, Motarjem P , et al. Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model[J]. J Reconstr Microsurg, 2008,24(8):545-550. |
[60] | Piccini P, Pavese N, Hagell P , et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease[J]. Brain, 2005,128(Pt 12):2977-2986. |
[61] | Liu J, Huang HY . How to improve the survival of the fetal ventral mesencephalic cell transplanted in Parkinson’s disease[J]. Neurosci Bull, 2007,23(6):377-382. |
[62] | Kim BJ, Seo JH, Bubien JK , et al. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro[J]. Neuroreport, 2002,13(9):1185-1188. |
[63] | Kingham PJ, Kalbermatten DF, Mahay D , et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro[J]. Exp Neurol, 2007,207(2):267-274. |
[64] | Kopen GC, Prockop DJ, Phinney DG . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains[J]. Proc Natl Acad Sci USA, 1999,96(19):10711-10716. |
[65] | Woodbury D, Schwarz EJ, Prockop DJ , et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000,61(4):364-370. |
[66] | Xu YF, Liu L, Li Y , et al. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro[J]. Brain Res, 2008,1239:49-55. |
[67] | Son EY, Ichida JK, Wainger BJ , et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons[J]. Cell Stem Cell, 2011,9(3):205-218. |
[68] | Vierbuchen T, Ostermeier A, Pang ZP , et al. Direct conversion of fibroblasts to functional neurons by defined factors[J]. Nature, 2010,463(7284):1035-1041. |
[69] | Amoroso MW, Croft GF, Williams DJ , et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells[J]. J Neurosci, 2013,33(2):574-586. |
[70] | Du ZW, Chen H, Liu HS , et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells[J]. Nat Commun, 2015,6:6626. |
[71] | Karumbayaram S, Novitch BG, Patterson M , et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons[J]. Stem Cells, 2009,27(4):806-811. |
[72] | Liu QY, Spusta SC, Mi RF , et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells[J]. Stem Cells Transl Med, 2012,1(4):266-278. |
[73] | Rajanahalli P, Meyer K, Zhu L , et al. Conversion of mouse fibroblasts to sphere cells induced by AlbuMAXI-containing medium[J]. Front Biosci (Elite Ed), 2012,4:1813-1822. |
[74] | Gu Q, Tomaskovic-Crook E, Lozano R , et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells[J]. Adv Healthcare Mater, 2016,5(12):1429-1438. |
[1] | 唐小雪, 周政, 李启期, 姜丹丹. 西格列汀激活基质细胞衍生因子-1/CXC趋化因子受体4信号通路对脂多糖诱导的人牙周膜干细胞增殖、凋亡、炎症和成骨分化的影响[J]. 华西口腔医学杂志, 2024, 42(1): 37-45. |
[2] | 陈芸梅, 刘艳, 黄秋雨, 罗姜, 吴红梅, 王烨华, 吴玲, 李秀娥, 毕小琴. 周围性面瘫患者的面神经功能训练专家共识[J]. 华西口腔医学杂志, 2023, 41(6): 613-621. |
[3] | 李雨霖, 徐静晨, 蒋晓鸽, 陈嵩. Twin-block矫治器对安氏Ⅱ类错患者髁突影响的Meta分析[J]. 华西口腔医学杂志, 2023, 41(4): 463-470. |
[4] | 唐辉, 王浪, 王雷, 饶鹏程, 罗道文, 付光新, 肖金刚. 改良耳屏缘切口腮腺前缘穿咬肌入路在髁突重建术中的应用[J]. 华西口腔医学杂志, 2023, 41(3): 290-296. |
[5] | 李胜鸿, 彭世元, 罗小玲, 王奕佩, 徐晓梅. 柚皮素通过基质细胞衍生因子1/趋化因子受体4信号轴对脂多糖作用下人牙周膜干细胞抗炎、成血管和成骨分化能力的影响[J]. 华西口腔医学杂志, 2023, 41(2): 175-184. |
[6] | 戴振宁, 郑蔚晗, 利时雨. 核因子κB受体活化因子配体和肿瘤坏死因子α经炎性牙周膜干细胞外泌体促进破骨细胞分化[J]. 华西口腔医学杂志, 2022, 40(4): 377-385. |
[7] | 卢倩, 郭柳媚, 毕小琴. 口腔癌患者术后吞咽障碍危险因素的系统评价[J]. 华西口腔医学杂志, 2022, 40(3): 328-334. |
[8] | 周建, 苏盈盈, 王松灵. 无细胞再生性牙髓治疗的现状及展望[J]. 华西口腔医学杂志, 2022, 40(1): 1-6. |
[9] | 廖立, 田卫东. 间充质干细胞来源胞外囊泡在牙及颌面部组织再生中的研究与展望[J]. 华西口腔医学杂志, 2022, 40(1): 7-13. |
[10] | 庞鸣, 韦红霞, 陈茜. 长链非编码RNA钾离子电压门控通道亚家族Q成员1重叠转录本1通过靶向miR-24-3p调控人牙周膜干细胞增殖和成骨分化[J]. 华西口腔医学杂志, 2021, 39(5): 547-554. |
[11] | 包明哲, 刘伟, 余树容, 门乙, 韩波, 李春洁. 富血小板纤维蛋白在下颌第三磨牙拔除术的应用系统评价与Meta分析[J]. 华西口腔医学杂志, 2021, 39(5): 605-611. |
[12] | 陈玲, 陈成, 李志勇, 张绮. 口内扫描数字化印模对固定修复临床应用效果的Meta分析[J]. 华西口腔医学杂志, 2021, 39(3): 306-312. |
[13] | 牟婷琛, 冯剑颖. 软骨干细胞标记及诱导分化的研究进展[J]. 华西口腔医学杂志, 2021, 39(1): 108-114. |
[14] | 夏恺, 孙闻天, 余丽媛, 刘钧. 不同快速扩弓装置对牙根吸收影响的系统评价[J]. 华西口腔医学杂志, 2021, 39(1): 38-47. |
[15] | 王林, 王熙, 季楠, 李海梅, 蔡世新. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究[J]. 华西口腔医学杂志, 2020, 38(6): 628-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||