West China Journal of Stomatology ›› 2025, Vol. 43 ›› Issue (3): 336-345.doi: 10.7518/hxkq.2025.2024357
• Basic Research • Previous Articles Next Articles
Wu Qinglin(), Lai Yingzhen(
), Huang Yanling, Xie Zeyu, Lin Yanyin
Received:
2024-09-25
Revised:
2024-11-29
Online:
2025-06-01
Published:
2025-06-10
Contact:
Lai Yingzhen
E-mail:1976717712@qq.com;dentistyz@126.com
Supported by:
CLC Number:
Wu Qinglin, Lai Yingzhen, Huang Yanling, Xie Zeyu, Lin Yanyin. In vitro osteogenic performance study of graphene oxide-coated titanium surfaces modified with dopamine or silane[J]. West China Journal of Stomatology, 2025, 43(3): 336-345.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
Primer sequences for osteogenic differentiation-related genes
基因 | 引物序列(5'-3') |
---|---|
RUNX2 | AACGATCTGAGATTTGTGGGC CCTGCGTGGGATTTCTTGGTT |
ALP | CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT |
COL-I | GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG |
OCN | CTGACCTCACAGATCCCAAGC TGGTCTGATAGCTCGTCACAAG |
OPN | AGCAAGAAACTCTTCCAAGCAA GTGAGATTCGTCAGATTCATCCG |
Osterix | ACCCCAAGATGTCTATAAGCCC CGCTCTAGCTCCTGACAGTTG |
GAPDH | ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC |
1 | Brånemark PI, Adell R, Breine U, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies[J]. Scand J Plast Reconstr Surg, 1969, 3(2): 81-100. |
2 | Xu JY, Zhang JW, Shi YF, et al. Surface modification of biomedical Ti and Ti alloys: a review on current advances[J]. Materials (Basel), 2022, 15(5): 1749. |
3 | 杨帮成, 周学东, 于海洋, 等. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129. |
Yang BC, Zhou XD, Yu HY, et al. Advances in titanium dental implant surface modification[J]. West China J Stomatol, 2019, 37(2): 124-129. | |
4 | Spriano S, Yamaguchi S, Baino F, et al. A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination[J]. Acta Biomater, 2018, 79: 1-22. |
5 | Xiao X, Xu Y, Fu JJ, et al. Enhanced hydroxyapatite growth and osteogenic activity on polydopamine coated Ti implants[J]. Nanosci Nanotechnol Lett, 2015, 7(3): 233-239. |
6 | Pan HT, Zheng QX, Guo XD, et al. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo [J]. Colloids Surf B Biointerfaces, 2016, 142: 1-9. |
7 | Cui DP, Guo W, Chang J, et al. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loa-ded with basic fibroblast growth factor for wound hea-ling[J]. Mater Today Bio, 2024, 28: 101190. |
8 | Zhao L, Zhang MY, Guo YF, et al. Alendronate-modified polydopamine-coated paclitaxel nanoparticles for osteosarcoma-targeted therapy[J]. J Drug Deliv Sci Technol, 2019, 53: 101133. |
9 | Yan M, Liang W, Du L, et al. Metronidazole-loaded polydopamine nanomedicine with antioxidant and antibacterial bioactivity for periodontitis[J]. Nanomedicine (Lond), 2023, 18(29): 2143-2157. |
10 | Daneshmandi L, Barajaa M, Tahmasbi Rad A, et al. Graphene-based biomaterials for bone regenerative enginee-ring: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation[J]. Adv Healthc Mater, 2021, 10(1): e2001414. |
11 | Moore L, Gatica M, Kim H, et al. Multi-protein delivery by nanodiamonds promotes bone formation[J]. J Dent Res, 2013, 92(11): 976-981. |
12 | Hao LJ, Li TJ, Wang L, et al. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations[J]. Bioact Mater, 2021, 6(10): 3125-3135. |
13 | Schünemann FH, Galárraga-Vinueza ME, Magini R, et al. Zirconia surface modifications for implant dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1294-1305. |
14 | Shin RS, Li Y, Jang LH, et al. Graphene-based materials for tissue engineering[J]. Adv Drug Deliv Rev, 2016, 105(PB): 255-274. |
15 | Hermenean A, Codreanu A, Herman H, et al. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects[J]. Sci Rep, 2017, 7(1): 16641. |
16 | Xu K, Tang X, Xiang Y, et al. Impact of high sodium diet on neovascularization and osseointegration around titanium implant: an in vivo and in vivo study[J]. Bio-med Environ Sci, 2024, 37(7): 739-753. |
17 | He XH, Guo CQ, Wang YH, et al. Enhancing osseointegration of titanium implants through MC3T3-E1 protein-gelatin polyelectrolyte multilayers[J]. J Biomed Mater Res B Appl Biomater, 2024, 112(2): e35373. |
18 | Albrektsson T, Brånemark PI, Hansson HA, et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man[J]. Acta Orthop Scand, 1981, 52(2): 155-170. |
19 | Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J]. Mater Sci Eng C, 2019, 102: 844-862. |
20 | Han X, Ma JX, Tian AX, et al. Surface modification te-chniques of titanium and titanium alloys for biomedical orthopaedics applications: a review[J]. Colloids Surf B Biointerfaces, 2023, 227: 113339. |
21 | Li X, Wang L, Fan Y, et al. Nanostructured scaffolds for bone tissue engineering[J]. J Biomed Mater Res A, 2013, 101(8): 2424-2435. |
22 | Sjöström T, Brydone AS, Meek RM, et al. Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices[J]. Nanomedicine (Lond), 2013, 8(1): 89-104. |
23 | Chen X, Zhu RF, Gao H, et al. A microstructural study on the alkali-treated titanium subjected to induction hea-ting[J]. J Mater Res Technol, 2022, 20: 281-290. |
24 | Gao H, Jie YF, Wang ZQ, et al. Bioactive tantalum metal prepared by micro-arc oxidation and NaOH treatment[J]. J Mater Chem B, 2014, 2(9): 1216-1224. |
25 | Gailite L, Scopelliti PE, Sharma VK, et al. Nanoscale roughness affects the activity of enzymes adsorbed on cluster-assembled titania films[J]. Langmuir, 2014, 30(20): 5973-5981. |
26 | Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A, 2005, 74(1): 49-58. |
27 | Cheng W, Zeng XW, Chen HZ, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine[J]. A-CS Nano, 2019, 13(8): 8537-8565. |
28 | Guo Q, Chen JS, Wang JL, et al. Recent progress in synthesis and application of mussel-inspired adhesives[J]. Nanoscale, 2020, 12(3): 1307-1324. |
29 | Yang HL, Xu YZ, Zhu M, et al. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway[J]. Biomaterials, 2016, 80: 1-10. |
30 | Hanami K, Nakano K, Saito K, et al. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis[J]. Bone, 2013, 56(1): 1-8. |
31 | Wang C, Chen X, Knierim JJ. Egocentric and allocentric representations of space in the rodent brain[J]. Curr O-pin Neurobiol, 2020, 60: 12-20. |
32 | Wu MH, Chen FX, Liu HF, et al. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration[J]. Mater Today Bio, 2022, 17: 100458. |
33 | Su JH, Du ZB, Xiao L, et al. Graphene oxide coated titanium surfaces with osteoimmunomodulatory role to enhance osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 113: 110983. |
34 | Dettin M, Herath T, Gambaretto R, et al. Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation[J]. J Biomed Mater Res A, 2009, 91(2): 463-479. |
35 | Yu X, Xu R, Zhang Z, et al. Different cell and tissue behavior of micro-/ nano-tubes and micro-/ nano-nets topographies on selective laser melting titanium to enhan-ce osseointegration[J]. Int J Nanomedicine, 2021, 16: 3329-3342. |
36 | Senna PM, de Almeida Barros Mourão CF, Mello-Ma-chado RC, et al. Silane-coating strategy for titanium functionalization does not impair osteogenesis in vivo [J]. Materials (Basel), 2021, 14(7): 1814. |
37 | Wang H, Lai YZ, Xie ZY, et al. Graphene oxide-modified concentric microgrooved titanium surfaces for the dual effects of osteogenesis and antiosteoclastogenesis[J]. ACS Appl Mater Interfaces, 2022, 14(49): 54500-54516. |
38 | Seok JM, Choe G, Lee SJ, et al. Enhanced three-dimensional printing scaffold for osteogenesis using a mussel-inspired graphene oxide coating[J]. Mater Des, 2021, 209: 109941. |
39 | Li Q, Wang Z. Involvement of FAK/P38 signaling pathways in mediating the enhanced osteogenesis induced by nano-graphene oxide modification on titanium implant surface[J]. Int J Nanomedicine, 2020, 15: 4659-4676. |
40 | Ren LP, Pan S, Li HQ, et al. Effects of aspirin-loaded graphene oxide coating of a titanium surface on proliferation and osteogenic differentiation of MC3T3-E1 cells[J]. Sci Rep, 2018, 8(1): 15143. |
41 | Zheng D, Neoh KG, Shi ZL, et al. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium[J]. J Colloid Interface Sci, 2013, 406: 238-246. |
42 | Ou JF, Wang JQ, Liu S, et al. Tribology study of redu-ced graphene oxide sheets on silicon substrate synthesi-zed via covalent assembly[J]. Langmuir, 2010, 26(20): 15830-15836. |
43 | Felgueiras HP, Evans MDM, Migonney V. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V[J]. Acta Biomater, 2015, 28: 225-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||