[1] |
Banas JA. Virulence properties of Streptococcus mutans [J]. Front Biosci, 2004, 9: 1267-1277.
|
[2] |
Featherstone JD. Dental caries: a dynamic disease process[J]. Aust Dent J, 2008, 53(3): 286-291.
|
[3] |
Xu YF, Itzek A, Kreth J. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis [J]. Microbiology, 2014, 160(12): 2627-2638.
|
[4] |
Sherrill C, Fahey RC. Import and metabolism of glutathione by Streptococcus mutans [J]. J Bacteriol, 1998, 180(6): 1454-1459.
|
[5] |
Vergauwen B, Verstraete K, Senadheera DB, et al. Mole-cular and structural basis of glutathione import in Gram-positive bacteria via GshT and the cystine ABC impor-ter TcyBC of Streptococcus mutans [J]. Mol Microbiol, 2013, 89(2): 288-303.
|
[6] |
Zhang J, Ye ZW, Singh S, et al. An evolving understan-ding of the S-glutathionylation cycle in pathways of redox regulation[J]. Free Radic Biol Med, 2018, 120: 204-216.
|
[7] |
Mailloux RJ. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals[J]. Redox Biol, 2020, 32: 101472.
|
[8] |
Bischoff ME, Shamsaei B, Yang JC, et al. Copper drives remodeling of metabolic state and progression of clear cell renal cell carcinoma[J]. Cancer Discov, 2025, 15(2): 401-426.
|
[9] |
Romig M, Eberwein M, Deobald D, et al. Reactivation and long-term stabilization of the [NiFe] Hox hydrogenase of Synechocystis sp. PCC6803 by glutathione after oxygen exposure[J]. J Biol Chem, 2025, 301(1): 108086.
|
[10] |
Li ZY, Zhang CZ, Li C, et al. S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogene-city of Streptococcus mutans [J]. PLoS Pathog, 2020, 16(7): e1008774.
|
[11] |
Hayes JD, Flanagan JU, Jowsey IR. Glutathione transfe-rases[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 51-88.
|
[12] |
Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases[J]. Chem Res Toxicol, 1997, 10(1): 2-18.
|
[13] |
Zhang SS, Zhang C, Sun FJ, et al. Glutathione-S-transferase (GST) catalyzes the degradation of chlorimuron-ethyl by Klebsiella jilinsis 2N3[J]. Sci Total Environ, 2020, 729: 139075.
|
[14] |
Kammerscheit X, Chauvat F, Cassier-Chauvat C. From cyanobacteria to human, MAPEG-type glutathione-S-transferases operate in cell tolerance to heat, cold, and lipid peroxidation[J]. Front Microbiol, 2019, 10: 2248.
|
[15] |
Peng X, Zhou XD, Xu X. The oral microbiome bank of China[J]. Int J Oral Sci, 2018, 10(2):16.
|
[16] |
Jones AS. The isolation of bacterial nucleic acids using cetyltrimethylammonium bromide (cetavlon)[J]. Biochim Biophys Acta, 1953, 10(4): 607-612.
|
[17] |
Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture[J]. Appl Environ Microbiol, 1991, 57(4): 1134-1138.
|
[18] |
Wen ZT, Suntharaligham P, Cvitkovitch DG, et al. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation[J]. Infect Immun, 2005, 73(1): 219-225.
|
[19] |
Klug B, Rodler C, Koller M, et al. Oral biofilm analysis of palatal expanders by fluorescence in situ hybridization and confocal laser scanning microscopy[J]. J Vis Exp, 2011(56): 2967.
|
[20] |
Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond[J]. Cell, 2008, 134(5): 703-707.
|
[21] |
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by piwi and maelstrom and its impact on chromatin state and gene expression[J]. Cell, 2012, 151(5): 964-980.
|
[22] |
Ocasio AB, Cotter PA. CDI/CDS system-encoding ge-nes of Burkholderia thailandensis are located in a mobile genetic element that defines a new class of transposon[J]. PLoS Genet, 2019, 15(1): e1007883.
|
[23] |
Juhas M. Horizontal gene transfer in human pathogens[J]. Crit Rev Microbiol, 2015, 41(1): 101-108.
|
[24] |
Davies EV, Winstanley C, Fothergill JL, et al. The role of temperate bacteriophages in bacterial infection[J]. FEMS Microbiol Lett, 2016, 363(5): fnw015.
|
[25] |
Renard A, Diene SM, Courtier-Martinez L, et al. 12/111phiA prophage domestication is associated with autoaggregation and increased ability to produce biofilm in Streptococcus agalactiae [J]. Microorganisms, 2021, 9(6): 1112.
|
[26] |
Han XL, Wang DY, Yang L, et al. Activation of polyamine catabolism promotes glutamine metabolism and creates a targetable vulnerability in lung cancer[J]. Proc Natl Acad Sci USA, 2024, 121(13): e2319429121.
|
[27] |
Wang YX, Ledvina HE, Tower CA, et al. Discovery of a glutathione utilization pathway in Francisella that shows functional divergence between environmental and pathogenic species[J]. Cell Host Microbe, 2023, 31(8): 1359-1370.e7.
|
[28] |
Wu HY, Yao Z, Li HK, et al. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA[J]. J Nanobiotechnol, 2024, 22: 307.
|