1 |
Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23.
|
2 |
Guo J, Ban JH, Li G, et al. Status of tooth loss and denture restoration in Chinese adult population: findings from the 4th national oral health survey[J]. Chin J Dent Res, 2018, 21(4): 249-257.
|
3 |
GBD Oral Disorders Collaborators, Bernabe E, Marcenes W, et al. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study[J]. J Dent Res, 2020, 99(4): 362-373.
|
4 |
Knight ET, Liu J, Seymour GJ, et al. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases[J]. Periodontol 2000, 2016, 71(1): 22-51.
|
5 |
Kocher T, König J, Borgnakke WS, et al. Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge[J]. Periodontol 2000, 2018, 78(1): 59-97.
|
6 |
Gao CH, Sun X, Lu L, et al. Prevalence of gestational diabetes mellitus in mainland China: a systematic review and Meta-analysis[J]. J Diabetes Investig, 2019, 10(1): 154-162.
|
7 |
Hu C, Jia WP. Diabetes in China: epidemiology and genetic risk factors and their clinical utility in personalized medication[J]. Diabetes, 2018, 67(1): 3-11.
|
8 |
Bragg F, Holmes MV, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China[J]. JAMA, 2017, 317(3): 280-289.
|
9 |
Mei YM, Li L, Wang XQ, et al. AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells[J]. J Cell Biochem, 2019. doi: 10.1002/jcb.29499.
|
10 |
Song B, Zhou T, Yang WL, et al. Programmed cell death in periodontitis: recent advances and future perspectives[J]. Oral Dis, 2017, 23(5): 609-619.
|
11 |
Ou LL, Sun T, Cheng YD, et al. MicroRNA-214 contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated periodontitis[J]. J Cell Biochem, 2019, 120(9): 14791-14803.
|
12 |
Mifflin L, Ofengeim D, Yuan JY. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target[J]. Nat Rev Drug Discov, 2020, 19(8): 553-571.
|
13 |
Liu ZJ, Chan FK. Regulatory mechanisms of RIPK1 in cell death and inflammation[J]. Semin Cell Dev Biol, 2021, 109: 70-75.
|
14 |
Ke XJ, Lei L, Li H, et al. Manipulation of necroptosis by Porphyromonasgingivalis in periodontitis development[J]. Mol Immunol, 2016, 77: 8-13.
|
15 |
Gao L, Tang W, Ding Z, et al. Protein-binding function of RNA-dependent protein kinase promotes proliferation through TRAF2/RIP1/NF-κB/c-Myc pathway in pancreatic β cells[J]. Mol Med, 2015, 21(1): 154-166.
|
16 |
Almubarak A, Tanagala KKK, Papapanou PN, et al. Disruption of monocyte and macrophage homeostasis in periodontitis[J]. Front Immunol, 2020, 11: 330.
|
17 |
Degterev A, Maki JL, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase[J]. Cell Death Differ, 2013, 20(2): 366.
|
18 |
Zhuang CL, Chen FE. Small-molecule inhibitors of necr-optosis: current status and perspectives[J]. J Med Chem, 2020, 63(4): 1490-1510.
|
19 |
Zhou T, Huang WK, Xu QY, et al. Nec-1 attenuates inflammation and cytotoxicity induced by high glucose on THP-1 derived macrophages through RIP1[J]. Arch Oral Biol, 2020, 118: 104858.
|
20 |
Moriwaki K, Chan FK. Necrosis-dependent and independent signaling of the RIP kinases in inflammation[J]. Cytokine Growth Factor Rev, 2014, 25(2): 167-174.
|
21 |
Shen B, Mei M, Pu Y, et al. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/mir-26a/TRPC6/PARP1 signaling[J]. Mol Ther N-ucleic Acids, 2019, 17: 701-713.
|
22 |
Xie L, Huang Y. Antagonism of RIP1 using necrostatin-1 (Nec-1) ameliorated damage and inflammation of HBV X protein (HBx) in human normal hepatocytes[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1194-1199.
|
23 |
赵海军, 陈铁楼, 张新海. 氧化应激诱发糖尿病性牙周炎作用及机制[J]. 口腔医学, 2016, 36(3): 273-276.
|
|
Zhao HJ, Chen TL, Zhang XH. Effects and mechanism of oxidative stress induced pathogenesis of diabetes-related periodontitis[J]. Stomatology, 2016, 36(3): 273-276.
|
24 |
徐惠霞, 付云. 氧化应激在糖尿病相关性牙周炎发病中的作用[J]. 国际口腔医学杂志, 2011, 38(5): 592-595.
|
|
Xu HX, Fu Y. Role of oxidative stress in the pathogenesis of diabetes-related periodontitis[J]. Int J Stomatol, 2011, 38(5): 592-595.
|
25 |
Bullon P, Newman HN, Obesity Battino M., mellitusdiabetes, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction[J]. Periodontol 2000, 2014, 64(1): 139-153.
|
26 |
Fang H, Yang K, Tang P, et al. Glycosylation end products mediate damage and apoptosis of periodontal ligament stem cells induced by the JNK-mitochondrial pathway[J]. Aging (Albany NY), 2020, 12(13): 12850-12868.
|
27 |
Zheng DH, Han ZQ, Wang XX, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs)[J]. Chem Biol Interact, 2019, 305: 40-47.
|
28 |
Buranasin P, Mizutani K, Iwasaki K, et al. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts[J]. PLoS One, 2018, 13(8): e0201855.
|
29 |
Kashiwagi Y, Takedachi M, Mori K, et al. High glucose-induced oxidative stress increases IL-8 production in human gingival epithelial cells[J]. Oral Dis, 2016, 22(6): 578-584.
|
30 |
Chen R, Xu JH, She YL, et al. Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia[J]. Int J Mol Med, 2018, 41(5): 2565-2572.
|
31 |
Jantas D, Chwastek J, Grygier B, et al. Neuroprotective effects of necrostatin-1 against oxidative stress-induced cell damage: an involvement of cathepsin D inhibition[J]. Neurotox Res, 2020, 37(3): 525-542.
|
32 |
Li L, Tan HP, Zou ZM, et al. Preventing necroptosis by scavenging ROS production alleviates heat stress-indu-ced intestinal injury[J]. Int J Hyperthermia, 2020, 37(1): 517-530.
|
33 |
Ning YC, Shi YQ, Chen J, et al. Necrostatin-1 attenuates cisplatin-induced nephrotoxicity through suppression of apoptosis and oxidative stress and retains klotho expression[J]. Front Pharmacol, 2018, 9: 384.
|
34 |
Tu JL, Chen WP, Cheng ZJ, et al. EGb761 ameliorates cell necroptosis by attenuating RIP1-mediated mitochondrial dysfunction and ROS production in both in vivo and in vitro models of Alzheimer’s disease[J]. Brain Res, 2020, 1736: 146730.
|
35 |
Chen SF, Lv X, Hu BW, et al. Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis[J]. Apoptosis, 2018, 23(5/6): 299-313.
|