[1] |
Wang EA, Rosen V, Cordes P , et al. Purification and cha-racterization of other distinct bone-inducing factors[J]. Proc Natl Acad Sci U S A, 1988,85(24):9484-9488.
doi: 10.1073/pnas.85.24.9484
URL
pmid: 3200834
|
[2] |
Rahman MS, Akhtar N, Jamil HM , et al. TGF-β/BMP sig-naling and other molecular events: regulation of osteoblasto-genesis and bone formation[J]. Bone Res, 2015,3:15005.
doi: 10.1038/boneres.2015.5
URL
|
[3] |
Katagiri T, Watabe T . Bone morphogenetic proteins[J]. Cold Spring Harb Perspect Biol, 2016, 8(6). pii: a021899.
doi: 10.1101/cshperspect.a021899
URL
|
[4] |
Wang R, Green J, Wang ZL , et al. Bone morphogenetic protein (BMP) signaling in development and human diseases[J]. Genes Dis, 2014,1(1):87-105.
doi: 10.1016/j.gendis.2014.07.005
URL
pmid: 25401122
|
[5] |
Miyazono K, Kamiya Y, Morikawa M . Bone morphogenetic protein receptors and signal transduction[J]. J Biochem, 2010,147(1):35-51.
doi: 10.1093/jb/mvp148
URL
pmid: 19762341
|
[6] |
Tsukamoto S, Mizuta T, Fujimoto M , et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic pro-tein signaling[J]. Sci Rep, 2014,4:7596.
|
[7] |
Wu MR, Chen GQ, Li YP . TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeo-stasis and disease[J]. Bone Res, 2016,4:16009.
doi: 10.1038/boneres.2016.9
URL
|
[8] |
Wang M, Jin H, Tang D , et al. Smad1 plays an essential role in bone development and postnatal bone formation[J]. Osteoarthr Cartil, 2011,19(6):751-762.
doi: 10.1016/j.joca.2011.03.004
URL
pmid: 3113680
|
[9] |
Gunnell LM, Jonason JH, Loiselle AE , et al. TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways[J]. J Bone Miner Res, 2010,25(8):1784-1797.
doi: 10.1002/jbmr.79
URL
pmid: 20213696
|
[10] |
Balic A, Thesleff I . Tissue interactions regulating tooth development and renewal[J]. Curr Top Dev Biol, 2015,115:157-186.
doi: 10.1016/bs.ctdb.2015.07.006
URL
|
[11] |
Huang XF, Bringas P, Slavkin HC , et al. Fate of HERS during tooth root development[J]. Dev Biol, 2009,334(1):22-30.
doi: 10.1016/j.ydbio.2009.06.034
URL
pmid: 19576204
|
[12] |
Mullen LM, Richards DW, Quaranta V . Evidence that laminin-5 is a component of the tooth surface internal basal lamina, supporting epithelial cell adhesion[J]. J Periodont Res, 1999,34(1):16-24.
doi: 10.1111/jre.1999.34.issue-1
URL
|
[13] |
Kim TH, Bae C, Yang SQ , et al. Nfic regulates tooth root patterning and growth[J]. Anat Cell Biol, 2015,48(3):188-194.
doi: 10.5115/acb.2015.48.3.188
URL
pmid: 4582161
|
[14] |
Roh SY, Park JC . The role of nuclear factor I-C in tooth and bone development[J]. J Korean Assoc Oral Maxillofac Surg, 2017,43(2):63-69.
doi: 10.5125/jkaoms.2017.43.2.63
URL
pmid: 5410429
|
[15] |
Nemoto E, Sakisaka Y, Tsuchiya M , et al. Wnt3a signaling induces murine dental follicle cells to differentiate into cemen-toblastic/osteoblastic cells via an osterix-dependent pathway[J]. J Periodont Res, 2016,51(2):164-174.
doi: 10.1111/jre.2016.51.issue-2
URL
|
[16] |
Huang XF, Xu X, Bringas P , et al. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is cru-cial in regulating tooth root development[J]. J Bone Miner Res, 2010,25(5):1167-1178.
|
[17] |
Liu Y, Feng JF, Li JY , et al. An Nfic-hedgehog signaling cascade regulates tooth root development[J]. Development, 2015,142(19):3374-3382.
doi: 10.1242/dev.127068
URL
pmid: 26293299
|
[18] |
Li JY, Feng JF, Liu Y , et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth[J]. Dev Cell, 2015,33(2):125-135.
doi: 10.1016/j.devcel.2015.02.021
URL
|
[19] |
Aïoub M, Lézot F, Molla M , et al. Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis [J]. Bone, 2007,41(5):851-859.
doi: 10.1016/j.bone.2007.07.023
URL
|
[20] |
Plikus MV, Zeichner-David M, Mayer JA , et al. Morphore-gulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity[J]. Evol Dev, 2005,7(5):440-457.
doi: 10.1111/ede.2005.7.issue-5
URL
|
[21] |
Rakian A, Yang WC, Gluhak-Heinrich J , et al. Bone mor-phogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium[J]. Int J Oral Sci, 2013,5(2):75-84.
doi: 10.1038/ijos.2013.41
URL
|
[22] |
Lapthanasupkul P, Feng JF, Mantesso A , et al. Ring1a/b polycomb proteins regulate the mesenchymal stem cell niche in continuously growing incisors[J]. Dev Biol, 2012,367(2):140-153.
|
[23] |
Feng JF, Jing JJ, Li JY , et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice[J]. Development, 2017,144(14):2560-2569.
doi: 10.1242/dev.150136
URL
|
[24] |
Gao YR, Yang G, Weng TJ , et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice[J]. Mol Cell Biol, 2009,29(21):5941-5951.
doi: 10.1128/MCB.00706-09
URL
|
[25] |
Li JY, Huang XF, Xu X , et al. SMAD4-mediated WNT sig-naling controls the fate of cranial neural crest cells during tooth morphogenesis[J]. Development, 2011,138(10):1977-1989.
doi: 10.1242/dev.061341
URL
|
[26] |
Yang ZH, Hai B, Qin LZ , et al. Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a β-catenin-dependent manner[J]. Mol Cell Biol, 2013,33(23):4732-4744.
doi: 10.1128/MCB.00456-13
URL
|
[27] |
Zhang R, Teng Y, Zhu L , et al. Odontoblast β-catenin sig-naling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015,58(9):876-881.
|
[28] |
Yang BN, Sun HL, Song FF , et al. Yes-associated protein 1 promotes the differentiation and mineralization of cemen-toblast[J]. J Cell Physiol, 2018,233(3):2213-2224.
doi: 10.1002/jcp.26089
URL
pmid: 28688217
|
[29] |
Dineshshankar J, Sivakumar M, Balasubramanium A , et al. Taurodontism[J]. J Phar Bioal Sci, 2014,6(5):13.
doi: 10.4103/0975-7406.137252
URL
|
[30] |
Foster BL, Nagatomo KJ, Tso HW , et al. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia[J]. J Bone Miner Res, 2013,28(2):271-282.
doi: 10.1002/jbmr.1767
URL
pmid: 35414441
|