华西口腔医学杂志 ›› 2018, Vol. 36 ›› Issue (5): 552-558.doi: 10.7518/hxkq.2018.05.016
收稿日期:
2018-04-23
修回日期:
2018-07-13
出版日期:
2018-10-01
发布日期:
2018-10-18
作者简介:
郑欣,硕士,E-mail: 基金资助:
Xin Zheng(),Xin Xu,Jinzhi He,Ping Zhang,Jiao Chen,Xue-dong Zhou(
)
Received:
2018-04-23
Revised:
2018-07-13
Online:
2018-10-01
Published:
2018-10-18
Supported by:
摘要:
哺乳动物可感受酸、甜、苦、咸、鲜五种味道,不同的味觉有助于机体鉴别营养物质和有毒有害物质,对哺乳动物的生存具有极其重要的意义。味觉的产生需要味蕾、外周神经系统及中枢神经系统的协同工作。目前对哺乳动物味蕾的发育与重建已经有了较为深入的研究,特别是通过小鼠模型的研究,在分子层面对上述两个过程有了一定认知。这一领域内的深入研究将有利于对味觉障碍与味觉丧失等疾病进行精准防治。
中图分类号:
郑欣,徐欣,何金枝,张平,陈皎,周学东. 哺乳动物味蕾发育与重建的研究现状[J]. 华西口腔医学杂志, 2018, 36(5): 552-558.
Xin Zheng,Xin Xu,Jinzhi He,Ping Zhang,Jiao Chen,Xue-dong Zhou. Development and homeostasis of taste buds in mammals[J]. West China Journal of Stomatology, 2018, 36(5): 552-558.
[1] |
Reynolds T . Hemlock alkaloids from Socrates to poison aloes[J]. Phytochemistry, 2005,66(12):1399-1406.
doi: 10.1016/j.phytochem.2005.04.039 URL pmid: 15955542 |
[2] |
Breslin PA . An evolutionary perspective on food and human taste[J]. Curr Biol, 2013,23(9):R409-R418.
doi: 10.1016/j.cub.2013.04.010 URL pmid: 23660364 |
[3] |
Reed DR, Knaapila A . Genetics of taste and smell: poisons and pleasures[J]. Prog Mol Biol Transl Sci, 2010,94:213-240.
doi: 10.1016/B978-0-12-385071-3.00012-5 URL pmid: 21075325 |
[4] |
Barlow LA . Progress and renewal in gustation: new insights into taste bud development[J]. Development, 2015,142(21):3620-3629.
doi: 10.1242/dev.120394 URL pmid: 26534983 |
[5] |
Chandrashekar J, Hoon MA, Ryba NJ , et al. The receptors and cells for mammalian taste[J]. Nature, 2006,444(7117):288-294.
doi: 10.1038/nature05401 URL pmid: 17108952 |
[6] |
Feng P, Huang LQ, Wang H . Taste bud homeostasis in health, disease, and aging[J]. Chem Senses, 2014,39(1):3-16.
doi: 10.1093/chemse/bjt059 URL pmid: 3864165 |
[7] |
Barlow LA, Klein OD . Developing and regenerating a sense of taste[J]. Curr Top Dev Biol, 2015,111:401-419.
doi: 10.1016/bs.ctdb.2014.11.012 URL |
[8] |
Ruo Redda MG, Allis S . Radiotherapy-induced taste im-pairment[J]. Cancer Treat Rev, 2006,32(7):541-547.
doi: 10.1016/j.ctrv.2006.06.003 URL |
[9] |
Mukherjee N, Carroll BL, Spees JL , et al. Pre-treatment with amifostine protects against cyclophosphamide-induced dis-ruption of taste in mice[J]. PLoS One, 2013,8(4):e61607.
doi: 10.1371/journal.pone.0061607 URL |
[10] |
Nguyen HM, Reyland ME, Barlow LA . Mechanisms of taste bud cell loss after head and neck irradiation[J]. J Neurosci, 2012,32(10):3474-3484.
doi: 10.1523/JNEUROSCI.4167-11.2012 URL |
[11] |
Kahn M . Can we safely target the WNT pathway[J]. Nat Rev Drug Discov, 2014,13(7):513-532.
doi: 10.1038/nrd4233 URL pmid: 24981364 |
[12] |
Takebe N, Miele L, Harris PJ , et al. Targeting Notch, Hed-gehog, and Wnt pathways in cancer stem cells: clinical update[J]. Nat Rev Clin Oncol, 2015,12(8):445-464.
doi: 10.1038/nrclinonc.2015.61 URL pmid: 4520755 |
[13] |
Breslin PA, Huang LQ . Human taste: peripheral anatomy, taste transduction, and coding[J]. Adv Otorhinolaryngol, 2006,63:152-190.
doi: 10.1159/000093760 URL pmid: 16733339 |
[14] |
Petersen CI, Jheon AH, Mostowfi P , et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size[J]. PLoS Genet, 2011,7(6):e1002098.
doi: 10.1371/journal.pgen.1002098 URL |
[15] |
Reiner DJ, Jan TA, Boughter JD , et al. Genetic analysis of tongue size and taste papillae number and size in recombi-nant inbred strains of mice[J]. Chem Senses, 2008,33(8):693-707.
doi: 10.1093/chemse/bjn025 URL |
[16] |
Witt M, Miller IJ . Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the rabbit tongue[J]. Histochemistry, 1992,98(3):173-182.
doi: 10.1007/BF00315876 URL |
[17] |
Liman ER, Zhang YV, Montell C . Peripheral coding of taste[J]. Neuron, 2014,81(5):984-1000.
doi: 10.1016/j.neuron.2014.02.022 URL |
[18] |
Pumplin DW, Yu C, Smith DV . Light and dark cells of rat vallate taste buds are morphologically distinct cell types[J]. J Comp Neurol, 1997,378(3):389-410.
doi: 10.1002/(ISSN)1096-9861 URL |
[19] |
Bartel DL, Sullivan SL, Lavoie EG , et al. Nucleoside tri-phosphate diphosphohydrolase-2 is the ecto-ATPase of type Ⅰcells in taste buds[J]. J Comp Neurol, 2006,497(1):1-12.
doi: 10.1002/(ISSN)1096-9861 URL |
[20] |
Finger TE, Danilova V, Barrows J , et al. ATP signaling is crucial for communication from taste buds to gustatory nerves[J]. Science, 2005,310(5753):1495-1499.
doi: 10.1126/science.1118435 URL pmid: 16322458 |
[21] |
Vandenbeuch A, Anderson CB, Parnes J , et al. Role of the ectonucleotidase NTPDase2 in taste bud function[J]. Proc Natl Acad Sci U S A, 2013,110(36):14789-14794.
doi: 10.1073/pnas.1309468110 URL pmid: 23959882 |
[22] |
Hoon MA, Adler E, Lindemeier J , et al. Putative mamma-lian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity[J]. Cell, 1999,96(4):541-551.
doi: 10.1016/S0092-8674(00)80658-3 URL |
[23] |
Zhao G, Zhang YF, Hoon MA , et al. The receptors for mam-malian sweet and umami taste[J]. Cell, 2003,115(3):255-266.
doi: 10.1016/S0092-8674(03)00844-4 URL pmid: 14636554 |
[24] |
Nelson G, Hoon MA, Chandrashekar J , et al. Mammalian sweet taste receptors[J]. Cell, 2001,106(3):381-390.
doi: 10.1016/S0092-8674(01)00451-2 URL |
[25] |
Nelson G, Chandrashekar J, Hoon MA , et al. An amino-acid taste receptor[J]. Nature, 2002,416(6877):199-202.
doi: 10.1038/nature726 URL pmid: 11894099 |
[26] |
Chandrashekar J, Mueller KL, Hoon MA , et al. T2Rs func-tion as bitter taste receptors[J]. Cell, 2000,100(6):703-711.
doi: 10.1016/S0092-8674(00)80706-0 URL pmid: 10761935 |
[27] |
Behrens M, Meyerhof W . Bitter taste receptors and human bitter taste perception[J]. Cell Mol Life Sci, 2006,63(13):1501-1509.
doi: 10.1007/s00018-006-6113-8 URL |
[28] |
Bushman JD, Ye WL, Liman E . A proton current associated with sour taste: distribution and functional properties[J]. FASEB J, 2015,29(7):3014-3026.
doi: 10.1096/fj.14-265694 URL pmid: 25857556 |
[29] |
Chandrashekar J, Yarmolinsky D, von Buchholtz L , et al. The taste of carbonation[J]. Science, 2009,326(5951):443-445.
doi: 10.1126/science.1174601 URL |
[30] |
Huang A, Chen XK, Hoon MA , et al. The cells and logic for mammalian sour taste detection[J]. Nature, 2006,442(7105):934-938.
doi: 10.1038/nature05084 URL pmid: 16929298 |
[31] |
Chandrashekar J, Kuhn C, Oka Y , et al. The cells and peri-pheral representation of sodium taste in mice[J]. Nature, 2010,464(7286):297-301.
doi: 10.1038/nature08783 URL |
[32] |
Oka Y, Butnaru M, von Buchholtz L , et al. High salt recruits aversive taste pathways[J]. Nature, 2013,494(7438):472-475.
doi: 10.1038/nature11905 URL pmid: 23407495 |
[33] |
Roper SD . The taste of table salt[J]. Pflugers Arch, 2015,467(3):457-463.
doi: 10.1007/s00424-014-1683-z URL pmid: 25559847 |
[34] |
Kapsimali M, Barlow LA . Developing a sense of taste[J]. Semin Cell Dev Biol, 2013,24(3):200-209.
doi: 10.1016/j.semcdb.2012.11.002 URL pmid: 23182899 |
[35] |
Mistretta CM, Liu HX . Development of fungiform papillae: patterned lingual gustatory organs[J]. Arch Histol Cytol, 2006,69(4):199-208.
doi: 10.1679/aohc.69.199 URL pmid: 17287575 |
[36] |
Oakley B, Witt M . Building sensory receptors on the tongue[J]. J Neurocytol, 2004,33(6):631-646.
doi: 10.1007/s11068-005-3332-0 URL pmid: 16217619 |
[37] |
Hall JM, Bell ML, Finger TE . Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papil-lae[J]. Dev Biol, 2003,255(2):263-277.
doi: 10.1016/S0012-1606(02)00048-9 URL pmid: 12648489 |
[38] |
Mistretta CM, Liu HX, Gaffield W , et al. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel loca-tions in dorsal lingual epithelium[J]. Dev Biol, 2003,254(1):1-18.
doi: 10.1016/S0012-1606(02)00014-3 URL |
[39] |
Thirumangalathu S, Harlow DE, Driskell AL , et al. Fate mapping of mammalian embryonic taste bud progenitors[J]. Development, 2009,136(9):1519-1528.
doi: 10.1242/dev.029090 URL pmid: 19363153 |
[40] |
Liu F, Thirumangalathu S, Gallant NM , et al. Wnt-beta-catenin signaling initiates taste papilla development[J]. Nat Genet, 2007,39(1):106-112.
doi: 10.1038/ng1932 URL pmid: 17128274 |
[41] |
Iwatsuki K, Liu HX, Grónder A , et al. Wnt signaling inte-racts with Shh to regulate taste papilla development[J]. Proc Natl Acad Sci U S A, 2007,104(7):2253-2258.
doi: 10.1073/pnas.0607399104 URL pmid: 17284610 |
[42] |
Zhu X, Liu Y, Zhao P , et al. Gpr177-mediated Wnt signaling is required for fungiform placode initiation[J]. J Dent Res, 2014,93(6):582-588.
doi: 10.1177/0022034514531985 URL pmid: 24736288 |
[43] |
Bitgood MJ, McMahon AP . Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo[J]. Dev Biol, 1995,172(1):126-138.
doi: 10.1006/dbio.1995.0010 URL |
[44] | Hall J, Finger T, MacCallum D , et al. Sonic hedgehog sig-naling in rodent tongue cultures[J]. Chem Senses, 1999,24:572. |
[45] |
Jung HS, Oropeza V, Thesleff I . Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae[J]. Mech Dev, 1999,81(1/2):179-182.
doi: 10.1016/S0925-4773(98)00234-2 URL |
[46] |
Arnold K, Sarkar A, Yram MA , et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice[J]. Cell Stem Cell, 2011,9(4):317-329.
doi: 10.1016/j.stem.2011.09.001 URL |
[47] |
Sarkar A, Hochedlinger K . The sox family of transcription factors: versatile regulators of stem and progenitor cell fate[J]. Cell Stem Cell, 2013,12(1):15-30.
doi: 10.1016/j.stem.2012.12.007 URL pmid: 3608206 |
[48] |
Okubo T, Pevny LH, Hogan BL . Sox2 is required for deve-lopment of taste bud sensory cells[J]. Genes Dev, 2006,20(19):2654-2659.
doi: 10.1101/gad.1457106 URL |
[49] |
Kapsimali M, Kaushik AL, Gibon G , et al. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity[J]. Development, 2011,138(16):3473-3484.
doi: 10.1242/dev.058669 URL pmid: 21791527 |
[50] |
Kito-Shingaki A, Seta YJ, Toyono T , et al. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1[J]. Chem Senses, 2014,39(5):403-414.
doi: 10.1093/chemse/bju010 URL pmid: 24682237 |
[51] |
Seta YJ, Oda M, Kataoka S , et al. Mash1 is required for the differentiation of AADC-positive type Ⅲ cells in mouse taste buds[J]. Dev Dyn, 2011,240(4):775-784.
doi: 10.1002/dvdy.22576 URL pmid: 21322090 |
[52] |
Ota MS, Kaneko Y, Kondo K , et al. Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation[J]. PLoS Genet, 2009,5(4):e1000443.
doi: 10.1371/journal.pgen.1000443 URL pmid: 2655725 |
[53] |
Beidler LM, Smallman RL . Renewal of cells within taste buds[J]. J Cell Biol, 1965,27(2):263-272.
doi: 10.1083/jcb.27.2.263 URL pmid: 5884625 |
[54] |
Hamamichi R, Asano-Miyoshi M, Emori Y . Taste bud con-tains both short-lived and long-lived cell populations[J]. Neuroscience, 2006,141(4):2129-2138.
doi: 10.1016/j.neuroscience.2006.05.061 URL pmid: 16843606 |
[55] |
Perea-Martinez I, Nagai T, Chaudhari N . Functional cell types in taste buds have distinct longevities[J]. PLoS One, 2013,8(1):e53399.
doi: 10.1371/journal.pone.0053399 URL pmid: 23320081 |
[56] |
Ueda K, Ichimori Y, Maruyama H , et al. Cell-type specific occurrence of apoptosis in taste buds of the rat circumvallate papilla[J]. Arch Histol Cytol, 2008,71(1):59-67.
doi: 10.1679/aohc.71.59 URL pmid: 18622094 |
[57] | Gaillard D, Xu MG, Liu F , et al. Β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates[J]. PLoS Genet, 2015,11(5):e1005208. |
[58] |
Okubo T, Clark C, Hogan BL . Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate[J]. Stem Cells, 2009,27(2):442-450.
doi: 10.1634/stemcells.2008-0611 URL pmid: 19038788 |
[59] |
Miura H, Kusakabe Y, Sugiyama C , et al. Shh and Ptc are associated with taste bud maintenance in the adult mouse[J]. Mech Dev, 2001,106(1/2):143-145.
doi: 10.1016/S0925-4773(01)00414-2 URL pmid: 11472844 |
[60] |
Miura H, Kusakabe Y, Harada S . Cell lineage and diffe-rentiation in taste buds[J]. Arch Histol Cytol, 2006,69(4):209-225.
doi: 10.1679/aohc.69.209 URL pmid: 17287576 |
[61] |
Miura H, Scott JK, Harada S , et al. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells[J]. Dev Dyn, 2014,243(10):1286-1297.
doi: 10.1002/dvdy.v243.10 URL |
[62] |
Luo XY, Okubo T, Randell S , et al. Culture of endodermal stem/progenitor cells of the mouse tongue[J]. In Vitro Cell Dev Biol Anim, 2009,45(1/2):44-54.
doi: 10.1007/s11626-008-9149-2 URL pmid: 18830772 |
[63] |
Tanaka T, Komai Y, Tokuyama Y , et al. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells[J]. Nat Cell Biol, 2013,15(5):511-518.
doi: 10.1038/ncb2719 URL pmid: 23563490 |
[64] |
Hisha H, Tanaka T, Kanno S , et al. Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells[J]. Sci Rep, 2013,3:3224.
doi: 10.1038/srep03224 URL |
[65] |
Yee K, Li Y, Redding KM , et al. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue[J]. Stem Cells, 2013,31(5):992-1000.
doi: 10.1002/stem.1338 URL pmid: 3637415 |
[66] |
Snippert HJ, Haegebarth A, Kasper M , et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science, 2010,327(5971):1385-1389.
doi: 10.1126/science.1184733 URL pmid: 20223988 |
[67] |
Barker N, van Es JH, Kuipers J , et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007,449(7165):1003-1007.
doi: 10.1038/nature06196 URL pmid: 17934449 |
[68] |
St John SJ, Garcea M, Spector AC . The time course of taste bud regeneration after glossopharyngeal or greater superfi-cial petrosal nerve transection in rats[J]. Chem Senses, 2003,28(1):33-43.
doi: 10.1093/chemse/28.1.33 URL |
[69] |
Takeda N, Jain R, Li DQ , et al. Lgr5 identifies progenitor cells capable of taste bud regeneration after injury[J]. PLoS One, 2013,8(6):e66314.
doi: 10.1371/journal.pone.0066314 URL pmid: 3688887 |
[70] |
Ren WW, Lewandowski BC, Watson J , et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo[J]. Proc Natl Acad Sci U S A, 2014,111(46):16401-16406.
doi: 10.1073/pnas.1409064111 URL pmid: 25368147 |
[71] |
Liu HX, Ermilov A, Grachtchouk M , et al. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance[J]. Dev Biol, 2013,382(1):82-97.
doi: 10.1016/j.ydbio.2013.07.022 URL |
[72] |
Castillo D, Seidel K, Salcedo E , et al. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium[J]. Development, 2014,141(15):2993-3002.
doi: 10.1242/dev.107631 URL |
[73] |
Gaillard D, Barlow LA . Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells[J]. Genesis, 2011,49(4):295-306.
doi: 10.1002/dvg.v49.4 URL |
[74] |
Matsumoto I, Ohmoto M, Narukawa M , et al. Skn-1a (Pou2f3) specifies taste receptor cell lineage[J]. Nat Neurosci, 2011,14(6):685-687.
doi: 10.1038/nn.2820 URL pmid: 21572433 |
[75] |
Miura H, Kusakabe Y, Kato H , et al. Co-expression pattern of Shh with Prox1 and that of Nkx2. 2 with Mash1 in mouse taste bud[J]. Gene Expr Patterns, 2003,3(4):427-430.
doi: 10.1016/S1567-133X(03)00081-4 URL pmid: 12915306 |
[76] |
Seta YJ, Stoick-Cooper CL, Toyono T , et al. The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds[J]. Arch Histol Cytol, 2006,69(3):189-198.
doi: 10.1679/aohc.69.189 URL |
[77] |
Smith DV, St John SJ . Neural coding of gustatory informa-tion[J]. Curr Opin Neurobiol, 1999,9(4):427-435.
doi: 10.1016/S0959-4388(99)80064-6 URL pmid: 10448155 |
[78] |
Erickson RP . The evolution of neural coding ideas in the chemical senses[J]. Physiol Behav, 2000,69(1/2):3-13.
doi: 10.1016/S0031-9384(00)00193-1 URL pmid: 10854913 |
[79] |
Caicedo A, Kim KN, Roper SD . Individual mouse taste cells respond to multiple chemical stimuli[J]. J Physiol (Lond), 2002,544(Pt 2):501-509.
doi: 10.1113/jphysiol.2002.027862 URL |
[80] | Lee H, Macpherson LJ, Parada CA , et al. Rewiring the taste system[J]. Nature, 2017,548(7667):330-333. |
[1] | 蒋子晨, 纪雅宁, 苏吉梅. 面部间隙感染为首发症状的区域性牙发育不良1例及文献回顾[J]. 华西口腔医学杂志, 2024, 42(1): 121-125. |
[2] | 唐小雪, 周政, 李启期, 姜丹丹. 西格列汀激活基质细胞衍生因子-1/CXC趋化因子受体4信号通路对脂多糖诱导的人牙周膜干细胞增殖、凋亡、炎症和成骨分化的影响[J]. 华西口腔医学杂志, 2024, 42(1): 37-45. |
[3] | 束丽红, 唐子春, 汪海霞, 曹立, 李虎. 非综合征型多数恒牙先天缺失的临床表型研究[J]. 华西口腔医学杂志, 2024, 42(1): 89-96. |
[4] | 李胜鸿, 彭世元, 罗小玲, 王奕佩, 徐晓梅. 柚皮素通过基质细胞衍生因子1/趋化因子受体4信号轴对脂多糖作用下人牙周膜干细胞抗炎、成血管和成骨分化能力的影响[J]. 华西口腔医学杂志, 2023, 41(2): 175-184. |
[5] | 戴振宁, 郑蔚晗, 利时雨. 核因子κB受体活化因子配体和肿瘤坏死因子α经炎性牙周膜干细胞外泌体促进破骨细胞分化[J]. 华西口腔医学杂志, 2022, 40(4): 377-385. |
[6] | 张鹏, 何平华, 徐佩琼, 廖岚. 颅骨锁骨发育不全1例及基因检测分析[J]. 华西口腔医学杂志, 2022, 40(3): 360-364. |
[7] | 韩安鹏, 鲁方丽, 陆玉平, 李强, 陈栋. Micro-CT对遗传性牙本质发育缺陷离体患牙的特征研究[J]. 华西口腔医学杂志, 2022, 40(2): 162-168. |
[8] | 周建, 苏盈盈, 王松灵. 无细胞再生性牙髓治疗的现状及展望[J]. 华西口腔医学杂志, 2022, 40(1): 1-6. |
[9] | 廖立, 田卫东. 间充质干细胞来源胞外囊泡在牙及颌面部组织再生中的研究与展望[J]. 华西口腔医学杂志, 2022, 40(1): 7-13. |
[10] | 庞鸣, 韦红霞, 陈茜. 长链非编码RNA钾离子电压门控通道亚家族Q成员1重叠转录本1通过靶向miR-24-3p调控人牙周膜干细胞增殖和成骨分化[J]. 华西口腔医学杂志, 2021, 39(5): 547-554. |
[11] | 李小兵, 叶全富, 贺红, 卢海平, 朱敏, 姜若萍, 邹淑娟, 韩向龙, 周力, 陈柯, 袁晓, 张军梅, 谭理军, 尹畅, 贺周, 李昂, 程斌, 阮文华, 黄芳, 刘娟, 马兰, 邹蕊, 杨芳, 张卫兵, 田玉楼, 蒋备战, 邵林琴, 黄洋, 唐丽琴, 高黎, 周陈晨. 中国儿童错𬌗畸形早期矫治专家共识[J]. 华西口腔医学杂志, 2021, 39(4): 369-376. |
[12] | 李秀芬, 刘畅, 刘济远, 曲涛, 潘韦霖, 潘剑, 华成舸. 硬腭前份神经支配增龄性变化的临床研究[J]. 华西口腔医学杂志, 2021, 39(2): 170-174. |
[13] | 牟婷琛, 冯剑颖. 软骨干细胞标记及诱导分化的研究进展[J]. 华西口腔医学杂志, 2021, 39(1): 108-114. |
[14] | 周春艳, 郑雪丹, 杨德琴. fth1b基因敲除对斑马鱼咽齿早期矿化的影响研究[J]. 华西口腔医学杂志, 2021, 39(1): 32-37. |
[15] | 王林, 王熙, 季楠, 李海梅, 蔡世新. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究[J]. 华西口腔医学杂志, 2020, 38(6): 628-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||