West China Journal of Stomatology ›› 2019, Vol. 37 ›› Issue (6): 671-676.doi: 10.7518/hxkq.2019.06.018
Previous Articles Next Articles
Deng Ling1(),Xue Jing2,Jiang Li3,Zou Ling2(),Li Wei1
Received:
2019-03-20
Revised:
2019-06-24
Online:
2019-12-01
Published:
2019-11-27
Contact:
Ling Zou
E-mail:zouling@scu.edu.cn
Supported by:
CLC Number:
Deng Ling,Xue Jing,Jiang Li,Zou Ling,Li Wei. Research progress on interactions between Candida albicans and common oral pathogens[J]. West China Journal of Stomatology, 2019, 37(6): 671-676.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Falsetta ML, Koo H . Beyond mucosal infection: a role for C. albicans-Streptococcal interactions in the pathogenesis of dental caries[J]. Curr Oral Health Rep, 2014,1(1):86-93.
doi: 10.1007/s40496-013-0011-6 URL |
[2] |
Metwalli KH, Khan SA, Krom BP , et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013,9(10):e1003616.
doi: 10.1371/journal.ppat.1003616 URL pmid: 24146611 |
[3] |
McLean RJ . Normal bacterial flora may inhibit Candida albicans biofilm formation by autoinducer-2[J]. Front Cell Infect Microbiol, 2014,4:117-118.
doi: 10.3389/fcimb.2014.00117 URL pmid: 25221750 |
[4] |
Bandara HM, Cheung BP, Watt RM , et al. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development[J]. Mol Oral Microbiol, 2013,28(1):54-69.
doi: 10.1111/omi.12006 URL |
[5] |
Peters BM, Ovchinnikova ES, Krom BP , et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012,158(Pt 12):2975-2986.
doi: 10.1099/mic.0.062109-0 URL pmid: 22918893 |
[6] |
O’Donnell LE, Millhouse E, Sherry L , et al. Polymicrobial Candida biofilms: friends and foe in the oral cavity[J]. FEMS Yeast Res, 2015,15(7):fov077.
doi: 10.1093/femsyr/fov077 URL pmid: 26298018 |
[7] |
Krom BP, Kidwai S, Ten Cate JM . Candida and other fungal species: forgotten players of healthy oral microbiota[J]. J Dent Res, 2014,93(5):445-451.
doi: 10.1177/0022034514521814 URL |
[8] |
Fragkou S, Balasouli C, Tsuzukibashi O , et al. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children[J]. Eur Arch Paediatr Dent, 2016,17(5):367-375.
doi: 10.1007/s40368-016-0239-7 URL |
[9] |
Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
doi: 10.1128/IAI.00087-14 URL |
[10] |
Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
doi: 10.1371/journal.ppat.1006407 URL pmid: 28617874 |
[11] |
Sztajer H, Szafranski SP, Tomasch J , et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans[J]. ISME J, 2014,8(11):2256-2271.
doi: 10.1038/ismej.2014.73 URL |
[12] |
Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
doi: 10.1177/0022034515592859 URL pmid: 26138722 |
[13] | Yang C, Scoffield J, Wu R , et al. Antigen Ⅰ/Ⅱ mediates interactions between Streptococcus mutans and Candida albicans[J]. Moloral Microbio, 2018,33(4):283-291. |
[14] |
Willems HM, Kos K, Jabra-Rizk MA , et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016, 74(5): ftw039.
doi: 10.1093/femspd/ftz063 URL pmid: 31702775 |
[15] |
Barbosa JO, Rossoni RD, Vilela SF , et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans[J]. PLoS One, 2016,11(3):e0150457.
doi: 10.1371/journal.pone.0150457 URL pmid: 26934196 |
[16] |
Shimazu K, Oguchi R, Takahashi Y , et al. Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii[J]. Odontology, 2016,104(3):310-317.
doi: 10.1007/s10266-015-0217-2 URL pmid: 26319990 |
[17] |
Dutton LC, Paszkiewicz KH, Silverman RJ , et al. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii[J]. Mol Oral Microbiol, 2016,31(2):136-161.
doi: 10.1111/omi.12111 URL pmid: 26042999 |
[18] |
Ma SL, Ge W, Yan YF , et al. Effects of Streptococcus sanguinis bacteriocin on deformation, adhesion ability, and young’s modulus of Candida albicans[J]. Biomed Res Int, 2017,2017:5291486.
doi: 10.1155/2017/5291486 URL pmid: 28612025 |
[19] |
Jesionowski AM, Mansfield JM, Brittan JL , et al. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-associated fruRBA operon in response to Candida albicans[J]. Mol Oral Microbiol, 2016,31(4):314-328.
doi: 10.1111/omi.12125 URL pmid: 26280461 |
[20] |
Bamford CV, d’Mello A, Nobbs AH , et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication[J]. Infect Immun, 2009,77(9):3696-3704.
doi: 10.1128/IAI.00438-09 URL pmid: 19528215 |
[21] |
Xu H, Sobue T, Thompson A , et al. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response[J]. Cell Microbiol, 2014,16(2):214-231.
doi: 10.1111/cmi.12216 URL |
[22] |
Xu HB, Sobue T, Bertolini M , et al. Streptococcus oralis and Candida albicans synergistically activate μ-calpain to degrade E-cadherin from oral epithelial junctions[J]. J Infect Dis, 2016,214(6):925-934.
doi: 10.1093/infdis/jiw201 URL pmid: 27190184 |
[23] |
Cavalcanti IM, Nobbs AH, Ricomini-Filho AP , et al. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material[J]. Pathog Dis, 2016,74(3):1-8.
doi: 10.1093/femspd/ftw002 URL pmid: 26755532 |
[24] |
Guo YQ, Wei CL, Liu CX , et al. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans[J]. Arch Oral Biol, 2015,60(9):1368-1374.
doi: 10.1016/j.archoralbio.2015.06.015 URL pmid: 26143096 |
[25] |
Cavalcanti IM, del Bel Cury AA, Jenkinson HF , et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle[J]. Mol Oral Microbiol, 2017,32(1):60-73.
doi: 10.1111/omi.12154 URL pmid: 26834007 |
[26] |
Rybalchenko OV, Bondarenko VM, Orlova OG , et al. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation[J]. Arch Microbiol, 2015,197(8):1027-1032.
doi: 10.1007/s00203-015-1140-1 URL pmid: 26267163 |
[27] |
Matsubara VH, Wang Y, Bandara HM , et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation[J]. Appl Microbiol Biotechnol, 2016,100(14):6415-6426.
doi: 10.1007/s00253-016-7527-3 URL pmid: 27087525 |
[28] |
Jiang QR, Stamatova I, Kainulainen V , et al. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model[J]. BMC Microbiol, 2016,16(1):149-160.
doi: 10.1186/s12866-016-0759-7 URL pmid: 27405227 |
[29] |
Ovchinnikova ES, Krom BP, Harapanahalli AK , et al. Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans[J]. Langmuir, 2013,29(15):4823-4829.
doi: 10.1021/la400554g URL pmid: 23509956 |
[30] |
Morales DK, Grahl N, Okegbe C , et al. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines[J]. mBio, 2013,4(1):e00526.
doi: 10.1128/mBio.00526-12 URL pmid: 23362320 |
[31] |
Reen FJ, Phelan JP, Gallagher L , et al. Exploiting interkingdom interactions for development of small-molecule inhibitors of Candida albicans biofilm formation[J]. Antimicrob Agent Chemother, 2016,60(10):5894-5905.
doi: 10.1128/AAC.00190-16 URL pmid: 27458231 |
[32] |
Lindsay AK, Morales DK, Liu ZL , et al. Analysis of Candida albicans mutants defective in the cdk8 module of mediator reveal links between metabolism and biofilm formation[J]. PLoS Genet, 2014,10(10):e1004567.
doi: 10.1371/journal.pgen.1004567 URL pmid: 25275466 |
[33] |
Bachtiar EW, Bachtiar BM, Jarosz LM , et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation[J]. Front Cell Infect Microbiol, 2014,4:94-102.
doi: 10.3389/fcimb.2014.00094 URL pmid: 25101248 |
[34] |
Brusca MI, Rosa A, Albaina O , et al. The impact of oral contraceptives on women’s periodontal health and the subgingival occurrence of aggressive periodontopathogens and Candida species[J]. J Periodontol, 2010,81(7):1010-1018.
doi: 10.1902/jop.2010.090575 URL pmid: 20370418 |
[35] |
Cruz MR, Graham CE, Gagliano BC , et al. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans[J]. Infect Immun, 2013,81(1):189-200.
doi: 10.1128/IAI.00914-12 URL |
[36] |
Graham CE, Cruz MR, Garsin DA , et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci USA, 2017,114(17):4507-4512.
doi: 10.1073/pnas.1620432114 URL pmid: 28396417 |
[37] |
Peters BM, Noverr MC . Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity[J]. Infect Immun, 2013,81(6):2178-2189.
doi: 10.1128/IAI.00265-13 URL |
[38] |
Peters BM, Ward RM, Rane HS , et al. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms[J]. Antimicrob Agent Chemother, 2013,57(1):74-82.
doi: 10.1128/AAC.01599-12 URL pmid: 23070170 |
[39] |
Nash EE, Peters BM, Fidel PL , et al. Morphology-independent virulence of Candida species during polymicrobial intra-abdominal infections with Staphylococcus aureus[J]. Infect Immun, 2016,84(1):90-98.
doi: 10.1128/IAI.01059-15 URL pmid: 26483410 |
[40] |
Fehrmann C, Jurk K, Bertling A , et al. Role for the fibrinogen-binding proteins Coagulase and Efb in the Staphylococcus aureus-Candida interaction[J]. Int J Med Microbiol, 2013,303(5):230-238.
doi: 10.1016/j.ijmm.2013.02.011 URL pmid: 23684234 |
[41] |
Krause J, Geginat G, Tammer I . Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms[J]. PLoS One, 2015,10(8):e0135404.
doi: 10.1371/journal.pone.0135404 URL pmid: 26262843 |
[42] |
de Carvalho Dias K, Barbugli PA, de Patto F , et al. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response[J]. BMC Microbiology, 2017,17(1):146-155.
doi: 10.1186/s12866-017-1031-5 URL pmid: 28666415 |
[43] |
Fox SJ, Shelton BT, Kruppa MD . Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria[J]. PLoS One, 2013,8(8):e71939.
doi: 10.1371/journal.pone.0071939 URL pmid: 23951271 |
[1] | Zhang Xuejiao, Li Jianxin, Jiang Feng, Zhou Chuanjian, Wu Junling. Development of novel hydrophilic and antibacterial silicone rubber impression material for dental application [J]. West China Journal of Stomatology, 2022, 40(5): 541-548. |
[2] | Liao Shengnan, Weitong Lü, Tang Quan, Ma Yuwen, Liu Lijia, Wang Liang, Peng Xian. Study on the inhibitory effect of selective estrogen receptor modulators on Streptococcus mutans [J]. West China Journal of Stomatology, 2022, 40(2): 218-224. |
[3] | Li Xiuzhen, Jiang Ming, Zhang Ying, Liu Yuhan, Li Fan, Zeng Fei, Ma Yuying, Yang Jiazhen, Yang Fang. Effects of Candida albicans on the metabolic activity and drug resistance of Streptococcus mutans based on D2O-labeled single-cell Raman microspectroscopy [J]. West China Journal of Stomatology, 2022, 40(2): 225-231. |
[4] | Zhang Jianguo, Liu Jun, Cen Rong, Hu Fengling. Finite element analysis of the effects of periodontal tissue temperature by continuous wave technique [J]. West China Journal of Stomatology, 2021, 39(4): 447-452. |
[5] | Mei Hongxiang, Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi. Advances in oral bacteria influencing host epigenetic regulation [J]. West China Journal of Stomatology, 2020, 38(5): 583-588. |
[6] | Liao Min, Cheng Lei, Zhou Xuedong, Ren Biao. Research progress of Candida albicans on malignant transformation of oral mucosal diseases [J]. West China Journal of Stomatology, 2020, 38(4): 431-437. |
[7] | Hu Ge, Zhang Xinyan, Zhao Jiaxin, Zhou Chuanjian, Wu Junling. Development of novel self-adhesive resin cement with antibacterial and self-healing properties [J]. West China Journal of Stomatology, 2020, 38(3): 256-262. |
[8] | Xin Shen,Yufei Yao,Jiyao Li,Yan Li. Human mycobiome and diseases [J]. West China Journal of Stomatology, 2019, 37(3): 314-319. |
[9] | Junling Wu,Tong Li,Xu Gao,Qiang Zhang,Di Liu,Jianhua Ge,Chuanjian Zhou. Effect of water immersion on a dental self-healing and antibacterial resin composite [J]. West China Journal of Stomatology, 2018, 36(5): 521-527. |
[10] | Zhun Yin, Yibin Ren, Desong Zhan. Effects of copper content on the antibacterial performance and corrosion resistance of CoCrMoCu alloy [J]. West China Journal of Stomatology, 2018, 36(2): 178-183. |
[11] | Deying Chen, Ge Hu, Chuanjian Zhou, Jianhua Ge, Junling Wu. Antibacterial dental adhesive containing nanoantibacterial inorganic fillers [J]. West China Journal of Stomatology, 2018, 36(1): 46-51. |
[12] | Jiayi Wu, Ruijie Huang. Research progress on QMix properties in root canal irrigation [J]. West China Journal of Stomatology, 2017, 35(5): 543-548. |
[13] | Wang Lu, Zheng Xin, Wang Shida, Li Jiyao, Xu Xin. Role of small noncoding RNA in the regulation of bacterial virulence [J]. West China Journal of Stomatology, 2016, 34(4): 433-438. |
[14] | Wu Junling, Zhang Qiang, Sun Ruinan, Zhu Ting, Ge Jianhua, Zhou Chuanjian. Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt [J]. West China Journal of Stomatology, 2015, 33(6): 565-569. |
[15] | Zhang Yangyang, He Jinzhi, Xu Xin, Zhou Xuedong. Bacterial diversity in the oral cavity of adolescents with different caries susceptibilities [J]. West China Journal of Stomatology, 2015, 33(6): 602-606. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||