West China Journal of Stomatology ›› 2019, Vol. 37 ›› Issue (3): 314-319.doi: 10.7518/hxkq.2019.03.017
Previous Articles Next Articles
Xin Shen1,Yufei Yao1,Jiyao Li2,Yan Li1()
Received:
2018-12-21
Revised:
2019-02-19
Online:
2019-06-01
Published:
2019-06-12
Contact:
Yan Li
E-mail:feifeiliyan@163.com
Supported by:
CLC Number:
Xin Shen,Yufei Yao,Jiyao Li,Yan Li. Human mycobiome and diseases[J]. West China Journal of Stomatology, 2019, 37(3): 314-319.
Add to citation manager EndNote|Ris|BibTeX
[1] |
NIH HMP Working Group, Peterson J, Garges S , et al. The NIH human microbiome project[J]. Genome Res, 2009,19(12):2317-2323.
doi: 10.1101/gr.096651.109 URL pmid: 19819907 |
[2] |
Arumugam M, Raes J, Pelletier E , et al. Enterotypes of the human gut microbiome[J]. Nature, 2011,473(7346):174-180.
doi: 10.1038/nature09944 |
[3] | Bożena DK, Iwona D, Ilona K . The mycobiome—a friendly cross-talk between fungal colonizers and their host[J]. Ann Parasitol, 2016,62(3):175-184. |
[4] |
Kumamoto CA . The fungal mycobiota: small numbers, large impacts[J]. Cell Host Microbe, 2016,19(6):750-751.
doi: 10.1016/j.chom.2016.05.018 URL |
[5] |
Sam QH, Chang MW, Chai MW . The fungal mycobiome and its interaction with gut bacteria in the host[J]. Int J Mol Sci, 2017, 18(8). pii: E330.
doi: 10.3390/ijms18020330 URL pmid: 5343866 |
[6] |
Ghannoum MA, Jurevic RJ, Mukherjee PK , et al. Characterization of the oral fungal microbiome in healthy individuals[J]. PLoS Pathog, 2010,6(1):e1000713.
doi: 10.1371/journal.ppat.1000713 URL |
[7] |
Dupuy AK, David MS, Li L , et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of malassezia as a prominent commensal[J]. PLoS One, 2014,9(3):e90899.
doi: 10.1371/journal.pone.0090899 URL |
[8] | Imabayashi Y, Moriyama M, Takeshita T , et al. Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing[J]. Sci Rep, 2016,6:28110. |
[9] |
Persoon IF, Buijs MJ, Özok AR , et al. The mycobiome of root canal infections is correlated to the bacteriome[J]. Clin Oral Investig, 2017,21(5):1871-1881.
doi: 10.1007/s00784-016-1980-3 URL |
[10] |
Mukherjee PK, Chandra J, Retuerto M , et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi[J]. PLoS Pathog, 2014,10(3):e1003996.
doi: 10.1371/journal.ppat.1003996 URL |
[11] |
Ricker A, Vickerman M, Dongari-Bagtzoglou A . Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans[J]. J Oral Microbiol, 2014,6(1):23419.
doi: 10.3402/jom.v6.23419 URL |
[12] |
Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981.
doi: 10.1128/IAI.00087-14 URL |
[13] |
Harriott MM, Noverr MC . Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance[J]. Antimicrob Agents Chemother, 2009,53(9):3914-3922.
doi: 10.1128/AAC.00657-09 URL |
[14] |
Hogan DA, Vik Å, Kolter R . A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology[J]. Mol Microbiol, 2004,54(5):1212-1223.
doi: 10.1111/j.1365-2958.2004.04349.x URL |
[15] |
Jarosz LM, Deng DM, van der Mei HC , et al. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation[J]. Eukaryotic Cell, 2009,8(11):1658-1664.
doi: 10.1128/EC.00070-09 URL pmid: 19717744 |
[16] | Marsland BJ, Gollwitzer ES . Host-microorganism interactions in lung diseases[J]. Nat Rev Immunol, 2014,14(12):827-835. |
[17] |
Tipton L, Ghedin E, Morris A . The lung mycobiome in the next-generation sequencing era[J]. Virulence, 2017,8(3):334-341.
doi: 10.1080/21505594.2016.1235671 URL |
[18] |
Kim SH, Clark ST, Surendra A , et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation[J]. PLoS Pathog, 2015,11(11):e1005308.
doi: 10.1371/journal.ppat.1005308 URL |
[19] |
Charlson ES, Diamond JM, Bittinger K , et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant[J]. Am J Respir Crit Care Med, 2012,186(6):536-545.
doi: 10.1164/rccm.201204-0693OC URL |
[20] | von Rosenvinge EC, Song Y, White JR , et al. Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota[J]. ISME J, 2013,7(7):1354-1366. |
[21] |
Ott SJ, Kühbacher T, Musfeldt M , et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity[J]. Scand J Gastroenterol, 2008,43(7):831-841.
doi: 10.1080/00365520801935434 URL |
[22] |
Hamad I, Sokhna C, Raoult D , et al. Molecular detection of eukaryotes in a single human stool sample from senegal[J]. PLoS One, 2012,7(7):e40888.
doi: 10.1371/journal.pone.0040888 URL |
[23] |
Hoffmann C, Dollive S, Grunberg S , et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents[J]. PLoS One, 2013,8(6):e66019.
doi: 10.1371/journal.pone.0066019 URL |
[24] | Mar Rodríguez M, Pérez D, Javier Chaves F , et al. Erratum: obesity changes the human gut mycobiome[J]. Sci Rep, 2016,6:21679. |
[25] |
Suhr MJ, Hallen-Adams HE . The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective[J]. Mycologia, 2015,107(6):1057-1073.
doi: 10.3852/15-147 URL |
[26] | Luan CG, Xie LL, Yang X , et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas[J]. Sci Rep, 2015,5:7980. |
[27] |
Sokol H, Leducq V, Aschard H , et al. Fungal microbiotadysbiosis in IBD[J]. Gut, 2017,66(6):1039-1048.
doi: 10.1136/gutjnl-2015-310746 URL |
[28] |
Dollive S, Chen YY, Grunberg S , et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment[J]. PLoS One, 2013,8(8):e71806.
doi: 10.1371/journal.pone.0071806 URL |
[29] |
Erb Downward JR, Falkowski NR, Mason KL , et al. Modulation of post-antibiotic bacterial community reassembly and host response by candida albicans[J]. Sci Rep, 2013,3:2191.
doi: 10.1038/srep02191 pmid: 3709164 |
[30] | Seed PC . The human mycobiome[J]. Cold Spring HarbPerspect Med, 2014,5(5):a019810. |
[31] |
Cui LJ, Morris A, Ghedin E . The human mycobiome in health and disease[J]. Genome Med, 2013,5(7):63.
doi: 10.1186/gm467 URL |
[32] |
Rizzetto L, de Filippo C, Cavalieri D . Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease[J]. Eur J Immunol, 2014,44(11):3166-3181.
doi: 10.1002/eji.201344403 URL pmid: 25257052 |
[33] |
Guo RY, Zheng NN, Lu HF , et al. Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis[J]. Microbial Ecology, 2012,64(4):918-927.
doi: 10.1007/s00248-012-0084-0 URL |
[34] |
Farr A, Kiss H, Holzer I , et al. Effect of asymptomatic vaginal colonization with Candida albicans on pregnancy outcome[J]. Acta Obstet Gynecol Scand, 2015,94(9):989-996.
doi: 10.1111/aogs.2015.94.issue-9 URL |
[35] | Köhler GA, Assefa S, Reid G . Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans[J]. Infect Dis Obstet Gynecol, 2012,2012:636474. |
[36] | Findley K, Oh J, Yang J , et al. Topographic diversity of fungal and bacterial communities in human skin[J]. Nature, 2013,498(7454):367-370. |
[37] |
Oh J, Byrd AL, Park M , et al. Temporal stability of the human skin microbiome[J]. Cell, 2016,165(4):854-866.
doi: 10.1016/j.cell.2016.04.008 URL |
[38] |
Schommer NN, Gallo RL . Structure and function of the human skin microbiome[J]. Trends Microbiol, 2013,21(12):660-668.
doi: 10.1016/j.tim.2013.10.001 URL |
[39] | Kalan L, Loesche M, Hodkinson BP , et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, associated with delayed healing[J]. MBio, 2016, 7(5). pii:e01058-16. |
[40] |
Taylor PR, Tsoni SV, Willment JA , et al. Dectin-1 is required for β-glucan recognition and control of fungal infection[J]. Nat Immunol, 2007,8(1):31-38.
doi: 10.1038/ni1408 URL pmid: 1888731 |
[41] |
Hise AG, Tomalka J, Ganesan S , et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans[J]. Cell Host Microbe, 2009,5(5):487-497.
doi: 10.1016/j.chom.2009.05.002 URL |
[42] |
Gessner MA, Werner JL, Lilly LM , et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against aspergillus fumigatus[J]. Infect Immun, 2012,80(1):410-417.
doi: 10.1128/IAI.05939-11 URL |
[43] |
Kashem SW, Igyártó BZ, Gerami-Nejad M , et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation[J]. Immunity, 2015,42(2):356-366.
doi: 10.1016/j.immuni.2015.01.008 URL |
[44] | Underhill DM, Iliev ID . The mycobiota: interactions between commensal fungi and the host immune system[J]. Nat Rev Immunol, 2014,14(6):405-416. |
[1] | Zhang Jianguo, Liu Jun, Cen Rong, Hu Fengling. Finite element analysis of the effects of periodontal tissue temperature by continuous wave technique [J]. West China Journal of Stomatology, 2021, 39(4): 447-452. |
[2] | Li Shensui, Wu Chenzhou, Li Longjiang. Progress on photodynamic therapy in oral diseases [J]. West China Journal of Stomatology, 2021, 39(2): 215-220. |
[3] | Yuan Quan. Oral implant treatment for elderly patients [J]. West China Journal of Stomatology, 2020, 38(6): 616-621. |
[4] | Luo Yuxue, Sun Manlin, Shi Peilei, Liu Pan, Chen Yiyin, Peng Xian. Research progress in the relationship between Veillonella and oral diseases [J]. West China Journal of Stomatology, 2020, 38(5): 576-582. |
[5] | Deng Ling,Xue Jing,Jiang Li,Zou Ling,Li Wei. Research progress on interactions between Candida albicans and common oral pathogens [J]. West China Journal of Stomatology, 2019, 37(6): 671-676. |
[6] | Xiaoyan Ou,Yixuan Zeng,Jianqiong Wen,Yin Zhou,Liwei Zeng. Status and strategies of oral health service demand and medical treatment utilization among 3- to 5-year-old preschool children in Jiangxi province [J]. West China Journal of Stomatology, 2018, 36(6): 650-655. |
[7] | Hui Wang,Di Kang,Xuedong Zhou,Yuqing Li. Prevention of infectious diseases through microecology modulation techniques [J]. West China Journal of Stomatology, 2018, 36(5): 564-567. |
[8] | Rui Ma, Xian Peng, Yi Xu, Dingyu Duan. Advances in salivary protein glycosylation and its relationship with systemic and oral diseases [J]. West China Journal of Stomatology, 2018, 36(3): 336-341. |
[9] | Qi Wang, Xinyi Zhou, Yi Ding. Effect of inflammaging on periodontitis [J]. West China Journal of Stomatology, 2018, 36(1): 99-103. |
[10] | Xingqun Cheng, Xin Xu, Xuedong. Zhou. Relationship between oral and gut microbes [J]. West China Journal of Stomatology, 2017, 35(3): 322-327. |
[11] | Liwei Zheng, Jing Zou, Yong You, Yumei Zhao, He Liu, Yufeng Mei, Wei Zhao, Xiaohong Duan. Management of oral diseases during pregnancy [J]. West China Journal of Stomatology, 2017, 35(2): 113-118. |
[12] | Yaling Jiang, Mingye Feng, Lei. Cheng. Research progress on a nanodrug delivery system for prevention and control of dental caries and periodontal diseases [J]. West China Journal of Stomatology, 2017, 35(1): 104-107. |
[13] | Cheng Xingqun, Zhou Xuedong, Xu Xin. Application of saliva in disease diagnosis [J]. West China Journal of Stomatology, 2016, 34(6): 647-653. |
[14] | Xie Meilian, Yu Ting, Zhuo Ying, Huang Xin, Xie Baoyi, Xuan Dongying, Zhang Jincai. Periodontal inflammation affects the mechanical and immune barrier functions of mice gut [J]. West China Journal of Stomatology, 2016, 34(4): 414-418. |
[15] | Xu Xin, He Jinzhi, Zhou Xuedong. Oral microbiota: a promising predictor of human oral and systemic diseases [J]. West China Journal of Stomatology, 2015, 33(6): 555-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||