West China Journal of Stomatology ›› 2020, Vol. 38 ›› Issue (5): 583-588.doi: 10.7518/hxkq.2020.05.019
Previous Articles Next Articles
Mei Hongxiang(), Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi()
Received:
2019-12-11
Revised:
2020-06-02
Online:
2020-10-01
Published:
2020-10-14
Contact:
He Jinzhi
E-mail:978604542@qq.com;hejinzhi@scu.edu.cn
Supported by:
CLC Number:
Mei Hongxiang, Chen Yilin, Shi Peilei, Yang Sirui, Xu Xin, He Jinzhi. Advances in oral bacteria influencing host epigenetic regulation[J]. West China Journal of Stomatology, 2020, 38(5): 583-588.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Berger SL, Kouzarides T, Shiekhattar R , et al. An operational definition of epigenetics[J]. Genes Dev, 2009,23(7):781-783.
doi: 10.1101/gad.1787609 URL pmid: 19339683 |
[2] |
Grabiec AM, Potempa J . Epigenetic regulation in bacterial infections: targeting histone deacetylases[J]. Crit Rev Microbiol, 2018,44(3):336-350.
doi: 10.1080/1040841X.2017.1373063 URL pmid: 28971711 |
[3] |
Jośko-Ochojska J, Rygiel K, Postek-Stefańska L . Diseases of the oral cavity in light of the newest epigenetic research: possible implications for stomatology[J]. Adv Clin Exp Med, 2019,28(3):397-406.
doi: 10.17219/acem/76060 URL pmid: 30277670 |
[4] | 熊智, 王连荣, 陈实 . 肠道微生物组与宿主的表观遗传修饰[J]. 微生物学报, 2018,58(11):1916-1925. |
Xiong Z, Wang LR, Chen S . Epigenetic regulation role of gut microbiome in host[J]. Acta Microbiol Sin, 2018,58(11):1916-1925. | |
[5] |
徐欣, 何金枝, 周学东 . 口腔微生物群落在口腔与全身疾病预警中的作用[J]. 华西口腔医学杂志, 2015,33(6):555-560.
doi: 10.7518/hxkq.2015.06.001 URL |
Xu X, He JZ, Zhou XD . Oral microbiota: a promising predictor of human oral and systemic diseases[J]. West China J Stomatol, 2015,33(6):555-560. | |
[6] | Zhang YH, Wang X, Li HX , et al. Human oral microbiota and its modulation for oral health[J]. Biomedecine Pharmacother, 2018,99:883-893. |
[7] |
Rothbart SB, Strahl BD . Interpreting the language of histone and DNA modifications[J]. Biochim Biophys Acta, 2014,1839(8):627-643.
doi: 10.1016/j.bbagrm.2014.03.001 URL pmid: 24631868 |
[8] |
Lebreton A, Lakisic G, Job V , et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type Ⅲ interferon response[J]. Science, 2011,331(6022):1319-1321.
doi: 10.1126/science.1200120 URL |
[9] |
Bandyopadhaya A, Tsurumi A, Maura D , et al. A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming[J]. Nat Microbiol, 2016,1:16174.
doi: 10.1038/nmicrobiol.2016.174 URL pmid: 27694949 |
[10] |
Bandyopadhaya A, Tsurumi A, Rahme LG . NF-κBp50 and HDAC1 interaction is implicated in the host tolerance to infection mediated by the bacterial quorum sensing signal 2-aminoacetophenone[J]. Front Microbiol, 2017,8:1211.
doi: 10.3389/fmicb.2017.01211 URL pmid: 28713342 |
[11] |
Eskandarian HA, Impens F, Nahori MA , et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection[J]. Science, 2013,341(6145):1238858.
doi: 10.1126/science.1238858 URL pmid: 23908241 |
[12] |
Rolando M, Gomez-Valero L, Buchrieser C . Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones[J]. Cell Microbiol, 2015,17(8):1098-1107.
doi: 10.1111/cmi.12463 URL pmid: 26031999 |
[13] |
Rolando M, Sanulli S, Rusniok C , et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication[J]. Cell Host Microbe, 2013,13(4):395-405.
doi: 10.1016/j.chom.2013.03.004 URL |
[14] |
Singh V, Prakhar P, Rajmani RS , et al. Histone methyltransferase SET8 epigenetically reprograms host immune responses to assist mycobacterial survival[J]. J Infect Dis, 2017,216(4):477-488.
doi: 10.1093/infdis/jix322 URL pmid: 28931237 |
[15] |
Meng H, Cao Y, Qin JZ , et al. DNA methylation, its mediators and genome integrity[J]. Int J Biol Sci, 2015,11(5):604-617.
doi: 10.7150/ijbs.11218 URL pmid: 25892967 |
[16] |
Barros SP, Offenbacher S . Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Periodontol 2000, 2014,64(1):95-110.
doi: 10.1111/prd.12000 URL |
[17] |
Hur K, Niwa T, Toyoda T , et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation[J]. Carcinogenesis, 2011,32(1):35-41.
doi: 10.1093/carcin/bgq219 URL |
[18] |
Tolg C, Sabha N, Cortese R , et al. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells[J]. Lab Invest, 2011,91(6):825-836.
doi: 10.1038/labinvest.2010.197 URL |
[19] |
Sharma G, Upadhyay S, Srilalitha M , et al. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding[J]. Nucleic Acids Res, 2015,43(8):3922-3937.
doi: 10.1093/nar/gkv261 URL pmid: 25824946 |
[20] |
Duval M, Cossart P, Lebreton A . Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk[J]. Semin Cell Dev Biol, 2017,65:11-19.
doi: 10.1016/j.semcdb.2016.06.016 URL pmid: 27381344 |
[21] |
Zhang YM, Noto JM, Hammond CE , et al. Helicobacter pylori-induced posttranscriptional regulation of H-K-ATPase α-subunit gene expression by miRNA[J]. Am J Physiol Gastrointest Liver Physiol, 2014,306(7):G606-G613.
doi: 10.1152/ajpgi.00333.2013 URL pmid: 24503769 |
[22] |
Ni B, Rajaram MV, Lafuse WP , et al. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a[J]. J Immunol, 2014,193(9):4537-4547.
doi: 10.4049/jimmunol.1400124 URL pmid: 25252958 |
[23] |
Aruni AW, Zhang KL, Dou YT , et al. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways[J]. Infect Immun, 2014,82(8):3261-3274.
doi: 10.1128/IAI.01727-14 URL |
[24] |
Yin L, Chung WO . Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria[J]. Mucosal Immunol, 2011,4(4):409-419.
doi: 10.1038/mi.2010.83 URL |
[25] |
Martins MD, Jiao Y, Larsson L , et al. Epigenetic modifications of histones in periodontal disease[J]. J Dent Res, 2016,95(2):215-222.
doi: 10.1177/0022034515611876 URL pmid: 26496800 |
[26] |
Diomede F, Thangavelu SR, Merciaro I , et al. Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation[J]. Eur J Histochem, 2017,61(3):2826.
doi: 10.4081/ejh.2017.2826 URL pmid: 29046054 |
[27] |
Yu XL, Shahir AM, Sha JF , et al. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi’s sarcoma-associated herpesvirus replication[J]. J Virol, 2014,88(8):4466-4479.
doi: 10.1128/JVI.03326-13 URL |
[28] |
Imai K, Ochiai K, Okamoto T . Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification[J]. J Immunol, 2009,182(6):3688-3695.
doi: 10.4049/jimmunol.0802906 URL pmid: 19265147 |
[29] |
Imai K, Inoue H, Tamura M , et al. The periodontal pathogen Porphyromonas gingivalis induces the Epstein-Barr virus lytic switch transactivator ZEBRA by histone modification[J]. Biochimie, 2012,94(3):839-846.
doi: 10.1016/j.biochi.2011.12.001 URL |
[30] |
Corrêa RO, Vieira A, Sernaglia EM , et al. Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria[J]. Cell Microbiol, 2017, 19(7): 10.1111/cmi.12720.
doi: 10.1111/cmi.12720 URL pmid: 28070968 |
[31] |
Chang MC, Chen YJ, Lian YC , et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, RANKL expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells[J]. Int J Mol Sci, 2018,19(12):E4071.
doi: 10.3390/ijms19124071 URL pmid: 30562925 |
[32] |
Li XT, Lu JX, Teng W , et al. Quantitative evaluation of MMP-9 and TIMP-1 promoter methylation in chronic periodontitis[J]. DNA Cell Biol, 2018,37(3):168-173.
doi: 10.1089/dna.2017.3948 URL pmid: 29298087 |
[33] |
de Camargo Pereira G, Guimarães GN, Planello AC , et al. Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes[J]. Clin Oral Investig, 2013,17(4):1279-1285.
doi: 10.1007/s00784-012-0816-z URL pmid: 22875665 |
[34] |
Drury JL, Chung WO . DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges[J]. Pathog Dis, 2015,73(2):1-6.
doi: 10.1111/2049-632X.12208 URL pmid: 25066236 |
[35] |
Le Sage F, Meilhac O, Gonthier MP . Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes[J]. Mol Cell Endocrinol, 2017,446:102-110.
doi: 10.1016/j.mce.2017.02.022 URL pmid: 28216438 |
[36] |
Benakanakere M, Abdolhosseini M, Hosur K , et al. TLR2 promoter hypermethylation creates innate immune dysbiosis[J]. J Dent Res, 2015,94(1):183-191.
doi: 10.1177/0022034514557545 URL pmid: 25389002 |
[37] |
Takai R, Uehara O, Harada F , et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis[J]. J Periodont Res, 2016,51(4):508-517.
doi: 10.1111/jre.2016.51.issue-4 URL |
[38] |
Uehara O, Abiko Y, Saitoh M , et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts[J]. J Microbiol Immunol Infect, 2014,47(3):176-181.
doi: 10.1016/j.jmii.2012.08.005 URL pmid: 23010540 |
[39] |
Stoecklin-Wasmer C, Guarnieri P, Celenti R , et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940.
doi: 10.1177/0022034512456551 URL |
[40] |
Du AQ, Zhao S, Wan LY , et al. MicroRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS[J]. J Cell Mol Med, 2016,20(7):1329-1338.
doi: 10.1111/jcmm.12819 URL pmid: 26987780 |
[41] |
Moffatt CE, Lamont RJ . Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells[J]. Infect Immun, 2011,79(7):2632-2637.
doi: 10.1128/IAI.00082-11 URL |
[42] |
Ouhara K, Savitri IJ, Fujita T , et al. miR-584 expressed in human gingival epithelial cells is induced by Porphyromonas gingivalis stimulation and regulates interleukin-8 production via lactoferrin receptor[J]. J Periodontol, 2014,85(6):e198-e204.
doi: 10.1902/jop.2013.130335 URL pmid: 24228808 |
[43] |
Benakanakere MR, Li QY, Eskan MA , et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes[J]. J Biol Chem, 2009,284(34):23107-23115.
doi: 10.1074/jbc.M109.013862 URL pmid: 19509287 |
[44] |
Holla S, Balaji KN . Epigenetics and miRNA during bacteria-induced host immune responses[J]. Epigenomics, 2015,7(7):1197-1212.
doi: 10.2217/epi.15.75 URL pmid: 26585338 |
[45] |
Hui TQ, Peng A, Zhao Y , et al. EZH2, a potential regulator of dental pulp inflammation and regeneration[J]. J Endod, 2014,40(8):1132-1138.
doi: 10.1016/j.joen.2014.01.031 URL pmid: 25069920 |
[46] |
Xu J, Yu B, Hong C , et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells[J]. Int J Oral Sci, 2013,5(4):200-205.
doi: 10.1038/ijos.2013.77 URL |
[47] |
Cardoso FP, Viana MB, Sobrinho AP , et al. Methylation pattern of the IFN-gamma gene in human dental pulp[J]. J Endod, 2010,36(4):642-646.
doi: 10.1016/j.joen.2009.12.017 URL pmid: 20307737 |
[48] |
Hahn CL, Best AM, Tew JG . Cytokine induction by Streptococcus mutans and pulpal pathogenesis[J]. Infect Immun, 2000,68(12):6785-6789.
doi: 10.1128/iai.68.12.6785-6789.2000 URL pmid: 11083796 |
[49] |
Wang XX, Feng ZH, Li QM , et al. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation[J]. Cell Tissue Res, 2018,373(2):477-485.
doi: 10.1007/s00441-018-2826-x URL pmid: 29654353 |
[50] |
Zhong S, Zhang SP, Bair E , et al. Differential expression of microRNAs in normal and inflamed human pulps[J]. J Endod, 2012,38(6):746-752.
doi: 10.1016/j.joen.2012.02.020 URL pmid: 22595106 |
[1] | Gao Yongqiang, Shi Pengwei, Shi Wenkai, Liu Yiming. Expression and mechanism of long non-coding RNA HCG22 in oral squamous cell carcinoma [J]. West China Journal of Stomatology, 2021, 39(6): 658-666. |
[2] | Fu Hanbin, Luo Lin. Expression of HOX transcript antisense intergenic RNA in salivary adenoid cystic carcinoma and its influence on prognosis [J]. West China Journal of Stomatology, 2020, 38(5): 509-512. |
[3] | Wen Jiahui, Wu Yanmin, Chen Lili. Functions of non-coding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells [J]. West China Journal of Stomatology, 2020, 38(3): 330-337. |
[4] | Geng Yudong,Wang Shubin,Lu Taiqing,Teng Wei. Expression and functions of long non-coding RNA actin filament-associated protein 1-antisense RNA1 in oral squamous cell carcinoma [J]. West China Journal of Stomatology, 2019, 37(6): 594-601. |
[5] | Junfang Zhao,Zhian Zha,Weihong Xie,Haibin Wang,Xinming Li,Qiang Sun,Minglei Sun. Effect of long chain non-coding RNA H19 on the migration and invasion of oral cancer cells and its molecular mechanism [J]. West China Journal of Stomatology, 2019, 37(4): 378-383. |
[6] | Shen Yu, Yang Pu, Hao Jin, Jing Dian, Tang Ge, Zhao Zhihe.. Role of DNA methylation in regulation of osteogenic differentiation of stem cells [J]. West China Journal of Stomatology, 2016, 34(5): 526-530. |
[7] | LIU Kun1, GAONing2, WANG Yi-chuan3, WANG Chang-mei1, WANGXiao-yi1, GAO Qing-hong1, XUANMing1, WENYu-ming1.. The Changes of Bacteria Group on Oral Mucosa after Radiotherapy of Postoperative Patients of Oral Carcinoma [J]. West China Journal of Stomatology, 2005, 23(02): 128-129. |
[8] | Zhang Ping, Zhu Zhu, Xiao Xiaorong et al. A Conditional Study of Analyzing Oral Bacterial End Products with Gradient Reversed-phase High Performance Liquid Chromatography [J]. West China Journal of Stomatology, 2002, 20(02): 101-103. |
[9] | Zhang Ping, Ye Liming, Xiao Xiaorong, et al. A Study of Analyzing Short-chain Fat Acid by Gradient Reversed-phase High-perfermance Liquid Chromatography [J]. West China Journal of Stomatology, 2001, 19(05): 294-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||