| 1 | 
																						 
											 Brånemark PI, Adell R, Breine U, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies[J]. Scand J Plast Reconstr Surg, 1969, 3(2): 81-100.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Xu JY, Zhang JW, Shi YF, et al. Surface modification of biomedical Ti and Ti alloys: a review on current advances[J]. Materials (Basel), 2022, 15(5): 1749.
											 											 | 
										
																													
																						| 3 | 
																						 
											 杨帮成, 周学东, 于海洋, 等. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129.
											 											 | 
										
																													
																						 | 
																						 
											 Yang BC, Zhou XD, Yu HY, et al. Advances in titanium dental implant surface modification[J]. West China J Stomatol, 2019, 37(2): 124-129.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Spriano S, Yamaguchi S, Baino F, et al. A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination[J]. Acta Biomater, 2018, 79: 1-22.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Xiao X, Xu Y, Fu JJ, et al. Enhanced hydroxyapatite growth and osteogenic activity on polydopamine coated Ti implants[J]. Nanosci Nanotechnol Lett, 2015, 7(3): 233-239.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Pan HT, Zheng QX, Guo XD, et al. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo [J]. Colloids Surf B Biointerfaces, 2016, 142: 1-9.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Cui DP, Guo W, Chang J, et al. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loa-ded with basic fibroblast growth factor for wound hea-ling[J]. Mater Today Bio, 2024, 28: 101190.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Zhao L, Zhang MY, Guo YF, et al. Alendronate-modified polydopamine-coated paclitaxel nanoparticles for osteosarcoma-targeted therapy[J]. J Drug Deliv Sci Technol, 2019, 53: 101133.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Yan M, Liang W, Du L, et al. Metronidazole-loaded polydopamine nanomedicine with antioxidant and antibacterial bioactivity for periodontitis[J]. Nanomedicine (Lond), 2023, 18(29): 2143-2157.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Daneshmandi L, Barajaa M, Tahmasbi Rad A, et al. Graphene-based biomaterials for bone regenerative enginee-ring: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation[J]. Adv Healthc Mater, 2021, 10(1): e2001414.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Moore L, Gatica M, Kim H, et al. Multi-protein delivery by nanodiamonds promotes bone formation[J]. J Dent Res, 2013, 92(11): 976-981.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Hao LJ, Li TJ, Wang L, et al. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations[J]. Bioact Mater, 2021, 6(10): 3125-3135.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Schünemann FH, Galárraga-Vinueza ME, Magini R, et al. Zirconia surface modifications for implant dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1294-1305.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Shin RS, Li Y, Jang LH, et al. Graphene-based materials for tissue engineering[J]. Adv Drug Deliv Rev, 2016, 105(PB): 255-274.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Hermenean A, Codreanu A, Herman H, et al. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects[J]. Sci Rep, 2017, 7(1): 16641.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Xu K, Tang X, Xiang Y, et al. Impact of high sodium diet on neovascularization and osseointegration around titanium implant: an in vivo and in vivo study[J]. Bio-med Environ Sci, 2024, 37(7): 739-753.
											 											 | 
										
																													
																						| 17 | 
																						 
											 He XH, Guo CQ, Wang YH, et al. Enhancing osseointegration of titanium implants through MC3T3-E1 protein-gelatin polyelectrolyte multilayers[J]. J Biomed Mater Res B Appl Biomater, 2024, 112(2): e35373.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Albrektsson T, Brånemark PI, Hansson HA, et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man[J]. Acta Orthop Scand, 1981, 52(2): 155-170.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications[J]. Mater Sci Eng C, 2019, 102: 844-862.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Han X, Ma JX, Tian AX, et al. Surface modification te-chniques of titanium and titanium alloys for biomedical orthopaedics applications: a review[J]. Colloids Surf B Biointerfaces, 2023, 227: 113339.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Li X, Wang L, Fan Y, et al. Nanostructured scaffolds for bone tissue engineering[J]. J Biomed Mater Res A, 2013, 101(8): 2424-2435.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Sjöström T, Brydone AS, Meek RM, et al. Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices[J]. Nanomedicine (Lond), 2013, 8(1): 89-104.
											 											 | 
										
																													
																						| 23 | 
																						 
											 Chen X, Zhu RF, Gao H, et al. A microstructural study on the alkali-treated titanium subjected to induction hea-ting[J]. J Mater Res Technol, 2022, 20: 281-290.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Gao H, Jie YF, Wang ZQ, et al. Bioactive tantalum metal prepared by micro-arc oxidation and NaOH treatment[J]. J Mater Chem B, 2014, 2(9): 1216-1224.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Gailite L, Scopelliti PE, Sharma VK, et al. Nanoscale roughness affects the activity of enzymes adsorbed on cluster-assembled titania films[J]. Langmuir, 2014, 30(20): 5973-5981.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure[J]. J Biomed Mater Res A, 2005, 74(1): 49-58.
											 											 | 
										
																													
																						| 27 | 
																						 
											 Cheng W, Zeng XW, Chen HZ, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine[J]. A-CS Nano, 2019, 13(8): 8537-8565.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Guo Q, Chen JS, Wang JL, et al. Recent progress in synthesis and application of mussel-inspired adhesives[J]. Nanoscale, 2020, 12(3): 1307-1324.
											 											 | 
										
																													
																						| 29 | 
																						 
											 Yang HL, Xu YZ, Zhu M, et al. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway[J]. Biomaterials, 2016, 80: 1-10.
											 											 | 
										
																													
																						| 30 | 
																						 
											 Hanami K, Nakano K, Saito K, et al. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis[J]. Bone, 2013, 56(1): 1-8.
											 											 | 
										
																													
																						| 31 | 
																						 
											 Wang C, Chen X, Knierim JJ. Egocentric and allocentric representations of space in the rodent brain[J]. Curr O-pin Neurobiol, 2020, 60: 12-20.
											 											 | 
										
																													
																						| 32 | 
																						 
											 Wu MH, Chen FX, Liu HF, et al. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration[J]. Mater Today Bio, 2022, 17: 100458.
											 											 | 
										
																													
																						| 33 | 
																						 
											 Su JH, Du ZB, Xiao L, et al. Graphene oxide coated titanium surfaces with osteoimmunomodulatory role to enhance osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 113: 110983.
											 											 | 
										
																													
																						| 34 | 
																						 
											 Dettin M, Herath T, Gambaretto R, et al. Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation[J]. J Biomed Mater Res A, 2009, 91(2): 463-479.
											 											 | 
										
																													
																						| 35 | 
																						 
											 Yu X, Xu R, Zhang Z, et al. Different cell and tissue behavior of micro-/nano-tubes and micro-/nano-nets topo-graphies on selective laser melting titanium to enhance osseointegration[J]. Int J Nanomedicine, 2021, 16: 3329-3342.
											 											 | 
										
																													
																						| 36 | 
																						 
											 Senna PM, de Almeida Barros Mourão CF, Mello-Ma-chado RC, et al. Silane-coating strategy for titanium functionalization does not impair osteogenesis in vivo [J]. Materials (Basel), 2021, 14(7): 1814.
											 											 | 
										
																													
																						| 37 | 
																						 
											 Wang H, Lai YZ, Xie ZY, et al. Graphene oxide-modified concentric microgrooved titanium surfaces for the dual effects of osteogenesis and antiosteoclastogenesis[J]. ACS Appl Mater Interfaces, 2022, 14(49): 54500-54516.
											 											 | 
										
																													
																						| 38 | 
																						 
											 Seok JM, Choe G, Lee SJ, et al. Enhanced three-dimensional printing scaffold for osteogenesis using a mussel-inspired graphene oxide coating[J]. Mater Des, 2021, 209: 109941.
											 											 | 
										
																													
																						| 39 | 
																						 
											 Li Q, Wang Z. Involvement of FAK/P38 signaling pathways in mediating the enhanced osteogenesis induced by nano-graphene oxide modification on titanium implant surface[J]. Int J Nanomedicine, 2020, 15: 4659-4676.
											 											 | 
										
																													
																						| 40 | 
																						 
											 Ren LP, Pan S, Li HQ, et al. Effects of aspirin-loaded graphene oxide coating of a titanium surface on proliferation and osteogenic differentiation of MC3T3-E1 cells[J]. Sci Rep, 2018, 8(1): 15143.
											 											 | 
										
																													
																						| 41 | 
																						 
											 Zheng D, Neoh KG, Shi ZL, et al. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium[J]. J Colloid Interface Sci, 2013, 406: 238-246.
											 											 | 
										
																													
																						| 42 | 
																						 
											 Ou JF, Wang JQ, Liu S, et al. Tribology study of redu-ced graphene oxide sheets on silicon substrate synthesi-zed via covalent assembly[J]. Langmuir, 2010, 26(20): 15830-15836.
											 											 | 
										
																													
																						| 43 | 
																						 
											 Felgueiras HP, Evans MDM, Migonney V. Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V[J]. Acta Biomater, 2015, 28: 225-233.
											 											 |