华西口腔医学杂志 ›› 2025, Vol. 43 ›› Issue (4): 592-602.doi: 10.7518/hxkq.2025.2024481
赵鹏宇1(), 陈岗1, 程熠2, 王超3, 陈丹3, 黄海涛1(
)
收稿日期:
2024-12-31
修回日期:
2025-03-04
出版日期:
2025-08-01
发布日期:
2025-08-29
通讯作者:
黄海涛
E-mail:1154652307@qq.com;hht945@hotmail.com
作者简介:
赵鹏宇,医师,硕士,E-mail:基金资助:
Zhao Pengyu1(), Chen Gang1, Cheng Yi2, Wang Chao3, Chen Dan3, Huang Haitao1(
)
Received:
2024-12-31
Revised:
2025-03-04
Online:
2025-08-01
Published:
2025-08-29
Contact:
Huang Haitao
E-mail:1154652307@qq.com;hht945@hotmail.com
Supported by:
摘要:
目的 评估3D打印个性化钛网(3D-PITM)作为支架材料在引导骨再生术(GBR)中的成骨效能。 方法 1)选取因牙槽骨缺损接受GBR治疗的患者作为研究对象,记录术后愈合并发症发生情况;2)获取术后至少6个月的颌骨锥形束计算机断层扫描(CBCT)影像数据,计算实际成骨体积百分比;3)在种植一期手术同期收集牙槽骨标本进行组织计量学分析,定量检测标本内新生骨及新生未矿化骨占比。同时,根据愈合并发症将标本分为3组(创口愈合良好组、创口裂开组、3D-PITM暴露组),比较各组间新生骨及新生未矿化骨比例的差异。 结果 1)本研究共纳入12例患者。其中1例GBR手术失败,3例发生3D-PITM暴露(暴露率25%)。2)11例GBR手术成功患者的实际成骨体积百分比为95.23%±28.85%。3)组织计量学分析显示,牙槽骨标本中新生骨占比40.35%,其中新生未矿化骨占新生骨的13.84%。组间比较显示:创口愈合良好组的新生骨及新生未矿化骨占比与创口裂开组及3D-PITM暴露组相比,差异无统计学意义(P>0.05)。 结论 3D-PITM影像学评估显示成骨体积良好,组织学分析证实术区有大量新生矿化骨形成,可实现理想的骨增量效果。
中图分类号:
赵鹏宇, 陈岗, 程熠, 王超, 陈丹, 黄海涛. 3D打印个性化钛网辅助应用于牙槽骨缺损修复的临床观察及组织学分析[J]. 华西口腔医学杂志, 2025, 43(4): 592-602.
Zhao Pengyu, Chen Gang, Cheng Yi, Wang Chao, Chen Dan, Huang Haitao. Clinical and histological evaluation of three-dimensional printing individualized titanium mesh for alveolar bone defect repair[J]. West China Journal of Stomatology, 2025, 43(4): 592-602.
表 1
患者基本情况
病例编号 | 性别 | 年龄/岁 | 缺牙位点 | 种植位点 | Terheyden分型 | 愈合期/月 |
---|---|---|---|---|---|---|
1 | 男 | 48 | 12 | 12 | 3/4型 | 8 |
2 | 女 | 52 | 35、36、37 | 35 | 3/4型 | 9 |
37 | 3/4型 | |||||
3 | 男 | 52 | 21、22 | 21 | 3/4型 | 9 |
22 | 3/4型 | |||||
4 | 女 | 50 | 21、22 | 21 | 3/4型 | 8 |
22 | 3/4型 | |||||
5 | 男 | 38 | 21、22、23、24 | 22 | 3/4型 | 7 |
23 | 3/4型 | |||||
24 | 2/4型 | |||||
6 | 女 | 40 | 24、25、26、27 | 24 | 3/4型 | 11 |
26 | 3/4型 | |||||
27 | 3/4型 | |||||
7 | 女 | 49 | 36、37 | 36 | 3/4型 | 10 |
37 | 3/4型 | |||||
8 | 女 | 28 | 11、12、21、22 | 12 | 3/4型 | 11 |
22 | 3/4型 | |||||
9 | 男 | 37 | 11 | 11 | 3/4型 | 10 |
10 | 女 | 50 | 11、12 | 11 | 4/4型 | 10 |
12 | 3/4型 | |||||
11 | 女 | 57 | 11、21 | 11 | 3/4型 | 10 |
21 | 3/4型 | |||||
12 | 男 | 53 | 31、32、41、42 | 32 | 2/4型 | 9 |
42 | 2/4型 |
表 4
组织计量学结果
标本编号 | 新生未矿化骨面积/mm2 | 新生骨总面积/mm2 | 视野内组织总面积/mm2 | 新生骨占比/% | 新生未矿化骨占比/% |
---|---|---|---|---|---|
1 | 0.28 | 1.75 | 2.75 | 63.75 | 15.76 |
2 | 0.01 | 0.3 | 2.97 | 10.14 | 3.68 |
3 | 0.06 | 2.07 | 5.76 | 35.93 | 2.90 |
4 | 0.14 | 0.67 | 3.45 | 19.40 | 20.53 |
5 | 0.4 | 1.08 | 4.33 | 24.97 | 36.86 |
6 | 0.2 | 5.78 | 11.3 | 51.14 | 3.42 |
7 | 0.04 | 3.46 | 7.14 | 48.51 | 1.02 |
8 | 0.35 | 1.11 | 2.49 | 44.76 | 31.01 |
9 | 0.1 | 0.23 | 3.89 | 6.03 | 40.68 |
10 | 0.78 | 2.84 | 3.22 | 88.17 | 27.34 |
11 | 0.23 | 1.59 | 7.3 | 21.71 | 14.48 |
12 | 0.03 | 0.24 | 2.16 | 11.17 | 13.19 |
13 | 0.05 | 0.72 | 2.95 | 24.51 | 7.09 |
14 | 0.86 | 4.83 | 6.9 | 69.97 | 17.85 |
15 | 0.2 | 1.68 | 2.09 | 80.52 | 12.18 |
16 | 0.03 | 1.09 | 7.25 | 15.06 | 2.46 |
17 | 0.1 | 2.07 | 2.57 | 80.58 | 4.87 |
18 | 1.91 | 3.24 | 3.8 | 85.33 | 59.05 |
[1] | Alotaibi FF, Rocchietta I, Buti J, et al. Comparative evidence of different surgical techniques for the management of vertical alveolar ridge defects in terms of complications and efficacy: a systematic review and network meta-analysis[J]. J Clin Periodontol, 2023, 50(11): 1487-1519. |
[2] | Li SH, Zhao YX, Tian TR, et al. A minimally invasive method for titanium mesh fixation with resorbable sutures in guided bone regeneration: a retrospective study[J]. Clin Implant Dent Relat Res, 2023, 25(1): 87-98. |
[3] | Yang W, Chen D, Wang C, et al. The effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium mesh[J]. BMC Oral Health, 2022, 22(1): 557. |
[4] | Wang HL, Boyapati L. “PASS” principles for predicta-ble bone regeneration[J]. Implant Dent, 2006, 15(1): 8-17. |
[5] | Xie Y, Li SH, Zhang TX, et al. Titanium mesh for bone augmentation in oral implantology: current application and progress[J]. Int J Oral Sci, 2020, 12(1): 37. |
[6] | Cunha G, Carvalho PHA, Quirino LC, et al. Titanium mesh exposure after bone grafting: treatment approaches-a systematic review[J]. Craniomaxillofac Trauma Reconstr, 2022, 15(4): 397-405. |
[7] | Briguglio F, Falcomatà D, Marconcini S, et al. The use of titanium mesh in guided bone regeneration: a systematic review[J]. Int J Dent, 2019, 2019: 9065423. |
[8] | Ciocca L, Fantini M, De Crescenzio F, et al. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches[J]. Med Biol Eng Comput, 2011, 49(11): 1347-1352. |
[9] | Sumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh[J]. J Craniomaxillofac Surg, 2015, 43(10): 2183-2188. |
[10] | Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry: prosthetically guided regeneration[J]. Periodontol 2000, 2018, 77(1): 213-240. |
[11] | Sagheb K, Schiegnitz E, Moergel M, et al. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh[J]. Int J Implant Dent, 2017, 3(1): 36. |
[12] | Cucchi A, Vignudelli E, Franceschi D, et al. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial[J]. Clin Oral Implants Res, 2021, 32(12): 1411-1424. |
[13] | Chiapasco M, Casentini P, Tommasato G, et al. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: preliminary results of a retrospective clinical study in humans[J]. Clin Oral Implants Res, 2021, 32(4): 498-510. |
[14] | Chrcanovic BR, Albrektsson T, Wennerberg A. Bone quality and quantity and dental implant failure: a systematic review and meta-analysis[J]. Int J Prosthodont, 2017, 30(3): 219-237. |
[15] | Nicolielo LFP, van Dessel J, Jacobs R, et al. Relationship between trabecular bone architecture and early dental implant failure in the posterior region of the mandible[J]. Clin Oral Implants Res, 2020, 31(2): 153-161. |
[16] | Li SH, Zhang TX, Zhou M, et al. A novel digital and visualized guided bone regeneration procedure and digital precise bone augmentation: a case series[J]. Clin Implant Dent Relat Res, 2021, 23(1): 19-30. |
[17] | Pillai S, Upadhyay A, Khayambashi P, et al. Dental 3D-printing: transferring art from the laboratories to the clinics[J]. Polymers (Basel), 2021, 13(1): E157. |
[18] | Fontana F, Maschera E, Rocchietta I, et al. Clinical classification of complications in guided bone regeneration procedures by means of a nonresorbable membrane[J]. Int J Periodontics Restorative Dent, 2011, 31(3): 265-273. |
[19] | Simion M, Pistilli R, Vignudelli E, et al. Semi-occlusive CAD/CAM titanium mesh for guided bone regeneration: preliminary clinical and histological results[J]. Int J Oral Implantol (Berl), 2023, 16(4): 327-336. |
[20] | Li L, Wang C, Li X, et al. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: a retrospective case series study[J]. Clin Implant Dent Relat Res, 2021, 23(1): 5-18. |
[21] | Zhang G, Miao X, Lin H, et al. A tooth-supported titanium mesh bending and positioning module for alveolar bone augmentation and improving accuracy[J]. J Esthet Restor Dent, 2023, 35(4): 586-595. |
[22] | Chen D, Zheng LL, Wang C, et al. Evaluation of surgical placement accuracy of customized CAD/CAM titanium mesh using screws-position-guided template: a retrospective comparative study[J]. Clin Implant Dent Relat Res, 2023, 25(3): 519-531. |
[23] | 许来俊, 袁鹤, 叶青, 等. 负载纳米羟磷灰石的结冷胶修复大鼠下颌骨缺损的效果评价[J]. 上海口腔医学, 2022, 31(5): 449-453. |
Xu LJ, Yuan H, Ye Q, et al. Repair of mandibular defects with. hydrogel loaded with nano-hydroxyapatite in rats[J]. Shanghai J Stomatol, 2022, 31(5): 449-453. | |
[24] | 杜文瑜, 杨静文, 姜婷. 甲磺酸去铁胺促进大鼠颅骨临界骨缺损血管化骨再生的早期连续观察[J]. 北京大学学报(医学版), 2021, 53(6): 1171-1177. |
Du WY, Yang JW, Jiang T. Early constant observation of the. effect of deferoxamine mesylate on improvement of vascularized bone regeneration in SD rat skull critical size defect model[J]. J Peking Uni (Health Sci), 2021, 53(6): 1171-1177. | |
[25] | Cucchi A, Sartori M, Parrilli A, et al. Histological and histomorphometric analysis of bone tissue after guided bone regeneration with non-resorbable membranes vs resorbable membranes and titanium mesh[J]. Clin Implant Dent Relat Res, 2019, 21(4): 693-701. |
[26] | Cucchi A, Bettini S, Fiorino A, et al. Histological and histomorphometric analysis of bone tissue using customized titanium meshes with or without resorbable membranes: a randomized clinical trial[J]. Clin Oral Implants Res, 2024, 35(1): 114-130. |
[27] | MacBeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a systematic review[J]. Clin Oral Implants Res, 2017, 28(8): 982-1004. |
[28] | Dellavia C, Canciani E, Pellegrini G, et al. Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer-aided design/computer-assisted manufacture titanium mesh in humans: a cohort study[J]. Clin Implant Dent Relat Res, 2021, 23(4): 600-611. |
[29] | Aludden H, Mordenfeld A, Dahlin C, et al. Histological and histomorphometrical outcome after lateral guided bone regeneration augmentation of the mandible with different ratios of deproteinized bovine bone mineral and autogenous bone. A preclinical in vivo study[J]. Clin Oral Implants Res, 2020, 31(10): 1025-1036. |
[30] | Gallo P, Díaz-Báez D, Perdomo S, et al. Comparative analysis of two biomaterials mixed with autogenous bone graft for vertical ridge augmentation: a histomorphometric study in humans[J]. Clin Implant Dent Relat Res, 2022, 24(5): 709-719. |
[31] | Corinaldesi G, Pieri F, Marchetti C, et al. Histologic and histomorphometric evaluation of alveolar ridge augmentation using bone grafts and titanium micromesh in humans[J]. J Periodontol, 2007, 78(8): 1477-1484. |
[32] | Zazou N, Diab N, Bahaa S, et al. Clinical comparison of different flap advancement techniques to periosteal releasing incision in guided bone regeneration: a randomized controlled trial[J]. Clin Implant Dent Relat Res, 2021, 23(1): 107-116. |
[33] | Bertran Faus A, Cordero Bayo J, Velasco-Ortega E, et al. Customized titanium mesh for guided bone regeneration with autologous bone and xenograft[J]. Materials (Basel), 2022, 15(18): 6271. |
[34] | Galindo-Moreno P, Moreno-Riestra I, Avila G, et al. Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation[J]. Clin Oral Implants Res, 2011, 22(8): 857-864. |
[35] | Leblebicioglu B, Tatakis DN. Complications following alveolar ridge augmentation procedures[J]. Periodontol 2000, 2023, 93(1): 221-235. |
[36] | Poli PP, Beretta M, Maiorana C, et al. Therapeutic strategies in the management of nonresorbable membrane and titanium mesh exposures following alveolar bone augmentation: a systematic scoping review[J]. Int J Oral Maxillofac Implants, 2022, 37(2): 250-269. |
[37] | Lim G, Lin GH, Monje A, et al. Wound healing complications following guided bone regeneration for ridge augmentation: a systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2018, 33(1): 41-50. |
[38] | Lizio G, Mazzone N, Corinaldesi G, et al. Reconstruction of extended and morphologically varied alveolar ridge defects with the titanium mesh technique: clinical and dental implants outcomes[J]. Int J Periodontics Restorative Dent, 2016, 36(5): 689-697. |
[39] | Ciocca L, Lizio G, Baldissara P, et al. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study[J]. J Oral Implantol, 2018, 44(2): 131-137. |
[40] | Zhou L, Su Y, Wang J, et al. Effect of exposure rates with customized versus conventional titanium mesh on guided bone regeneration: systematic review and meta-analysis[J]. J Oral Implantol, 2022, 48(4): 339-346. |
[41] | Cucchi A, Vignudelli E, Napolitano A, et al. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2017, 19(5): 821-832. |
[42] | Nan X, Wang C, Li LZ, et al. Application of three-dimensional printing individualized titanium mesh in alveolar bone defects with different Terheyden classifications: a retrospective case series study[J]. Clin Oral Implants Res, 2023, 34(6): 639-650. |
[43] | Machtei EE. The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis[J]. J Periodontol, 2001, 72(4): 512-516. |
[44] | Atef M, Tarek A, Shaheen M, et al. Horizontal ridge augmentation using native collagen membrane vs titanium mesh in atrophic maxillary ridges: randomized clinical trial[J]. Clin Implant Dent Relat Res, 2020, 22(2): 156-166. |
[45] | Hofferber CE, Beck JC, Liacouras PC, et al. Volumetric changes in edentulous alveolar ridge sites utilizing guided bone regeneration and a custom titanium ridge augmentation matrix (CTRAM): a case series study[J]. Int J Implant Dent, 2020, 6(1): 83. |
[46] | Hartmann A, Seiler M. Minimizing risk of customized titanium mesh exposures-a retrospective analysis[J]. BMC Oral Health, 2020, 20(1): 36. |
[47] | Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defects[J]. Int J Oral Maxillofac Implants, 2014, 29(4): 826-835. |
[48] | Lee WZ, Ong MMA, Yeo ABK. Gingival profiles in a select Asian cohort: a pilot study[J]. J Invest Clin Dent, 2018, 9(1). DOI:10.1111/jicd.12269 . |
[49] | Hartmann A, Hildebrandt H, Schmohl JU, et al. Evaluation of risk parameters in bone regeneration using a customized titanium mesh: results of a clinical study[J]. Implant Dent, 2019, 28(6): 543-550. |
[50] | Frost NA, Mealey BL, Jones AA, et al. Periodontal biotype: gingival thickness as it relates to probe visibility and buccal plate thickness[J]. J Periodontol, 2015, 86(10): 1141-1149. |
[51] | Wang CX, Rong QG, Zhu N, et al. Finite element analysis of stress in oral mucosa and titanium mesh interface[J]. BMC Oral Health, 2023, 23(1): 25. |
[52] | Lin GH, Chan HL, Wang HL. The significance of keratinized mucosa on implant health: a systematic review[J]. J Periodontol, 2013, 84(12): 1755-1767. |
[53] | Miyamoto I, Funaki K, Yamauchi K, et al. Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity[J]. Clin Implant Dent Relat Res, 2012, 14(2): 304-311. |
[54] | Bahaa S, Diab N, Zazou N, et al. Evaluation of bone gain in horizontal ridge augmentation using titanium mesh in combination with different flap advancement techniques: a randomized clinical trial[J]. Int J Oral Ma-xillofac Surg, 2023, 52(3): 379-387. |
[55] | Torres J, Tamimi F, Alkhraisat MH, et al. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with anorganic bovine bone[J]. J Clin Periodontol, 2010, 37(10): 943-951. |
[56] | Kaner D, Zhao H, Arnold W, et al. Pre-augmentation soft tissue expansion improves scaffold-based vertical bone regeneration-a randomized study in dogs[J]. Clin Oral Implants Res, 2017, 28(6): 640-647. |
[57] | Kablan F, Laster Z. The use of free fat tissue transfer from the buccal fat pad to obtain and maintain primary closure and to improve soft tissue thickness at bone-augmented sites: technique presentation and report of case series[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e220-e231. |
[1] | 苏文祺, 张丹丹, 程艳, 崔雯洁, 雷浪, 李厚轩. 基于菌斑控制的种植体周围炎引导骨再生治疗随访7年1例[J]. 华西口腔医学杂志, 2025, 43(1): 133-139. |
[2] | 史芮雯, 杨虎, 刘月, 史一林, 张圣锛, 刘煜, 宋丰, 兰晶. L形技术联合浓缩生长因子应用于上颌前牙水平型骨缺损的临床效果观察[J]. 华西口腔医学杂志, 2025, 43(1): 76-83. |
[3] | 解娜, 黄幼生, 吴文婷, 翁阳. 舌GLI1基因改变的间叶性肿瘤1例并文献复习[J]. 华西口腔医学杂志, 2024, 42(6): 822-827. |
[4] | 陈良伟, 韩建民, 郭传瑸. 可降解镁基金属引导骨再生膜的研究现状与展望[J]. 华西口腔医学杂志, 2024, 42(4): 415-425. |
[5] | 朱文翠, 张映林, 李方方, 黎贵芸, 张鹏, 房辉, 边莉. 腮腺透明细胞型嗜酸细胞腺瘤1例[J]. 华西口腔医学杂志, 2024, 42(1): 126-134. |
[6] | 陈露祎, 黄忞, 吴佳奇, 罗俊. 引导骨再生术辅助正畸治疗关闭中切牙缺牙间隙的应用[J]. 华西口腔医学杂志, 2021, 39(4): 482-488. |
[7] | 于甜甜,刘金,尹俊景,许香娜,闫圣杰,兰晶. 浓缩生长因子对上颌前牙区种植骨增量术后反应的影响[J]. 华西口腔医学杂志, 2019, 37(4): 398-402. |
[8] | 曹钰彬,刘畅,潘韦霖,涂缘,李春洁,华成舸. 引导骨再生屏障膜改良的研究进展[J]. 华西口腔医学杂志, 2019, 37(3): 325-329. |
[9] | 苟加梅 陈琴 周青 刘颖娴 . 涎腺Warthin瘤超声特征与病理对照分析[J]. 华西口腔医学杂志, 2013, 31(4): 389-392. |
[10] | 刘曼 张强 周立伟 莫安春 李小玉 李吉东3 . 纳米抗菌复合膜的结构及作为引导骨组织再生膜的生物相容性研究[J]. 华西口腔医学杂志, 2013, 31(2): 127-130. |
[11] | 刘筱琳 王丽辉 王明锋 刘琳 王茜 翟俊辉. Nd:YAG激光去除陶瓷托槽对兔牙髓组织的影响[J]. 华西口腔医学杂志, 2009, 27(04): 413-416. |
[12] | 费伟 杨小民 李铮 尹明平 沈志浩 廖楚航. 可吸收性胶原膜引导即刻植入种植体周围骨组织再生的实验研究[J]. 华西口腔医学杂志, 2008, 26(05): 494-498. |
[13] | 刘曼 王少安 莫安春 孟耀 胡杰 李小玉. 人脱细胞真皮基质的结构及与MG63成骨样细胞生物相容性的研究[J]. 华西口腔医学杂志, 2008, 26(02): 129-132. |
[14] | 王志勇,石冰,鲁大为,宋庆高. 颊、腭粘膜移植修复硬腭裸露骨面的组织学观察[J]. 华西口腔医学杂志, 2002, 20(05): 326-329. |
[15] | 牟雁东,郑弟泽. 全冠修复牙体预备后牙髓的组织学研究[J]. , 1998, 16(02): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||