1 |
刘建平, 冯晓刚, 王乐. 双端固定桥两基牙牙周膜厚度分别不同时的生物力学分析[J]. 中国医学物理学杂志, 2011, 28(6): 3067-3069.
|
|
Liu JP, Feng XG, Wang L. Biomechanical analysis of the stress distribution of rigid fixed bridge during different thickness of periodontal membranes around abutments [J]. Chin J Med Phys, 2011, 28(6): 3067-3069.
|
2 |
Wu B, Li N, Liu M, et al. Construction of human periodontal ligament constitutive model based on collagen fiber content[J]. Materials (Basel), 2023, 16(19): 6582.
|
3 |
Yu W, Liu H, Huo X, et al. Effects of osteocyte orientation on loading-induced interstitial fluid flow and nut-rient transport in bone[J]. Acta Mechanica Sinica, 2023, 39(1): 622332.
|
4 |
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence[J]. Bone Res, 2022, 10(1): 48.
|
5 |
Wang L, You X, Zhang L, et al. Mechanical regulation of bone remodeling[J]. Bone Res, 2022, 10(1): 16.
|
6 |
Metzger TA, Kreipke TC, Vaughan TJ, et al. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response[J]. J Biomech Eng, 2015, 137(1). doi: 10.1115/1.4028985 .
|
7 |
罗睿, 赵振达, 冷慧杰, 等. 大鼠牙槽骨理想模型的流固耦合数值模拟研究[J]. 生物医学工程学杂志, 2020, 37(1): 87-95.
|
|
Luo R, Zhao ZD, Leng HJ, et al. Fluid-solid coupling numerical simulation on ideal porous structure of rat alveolar bone[J]. J Biomed Eng, 2020, 37(1): 87-95.
|
8 |
罗睿, 焦飞, 孙青, 等. 正畸与咬合力作用下大鼠牙槽骨内液体流动的数值模拟[J]. 医用生物力学, 2020, 35(1): 57-63.
|
|
Luo R, Jiao F, Sun Q, et al. Numerical simulation on fluid flow within rat alveolar bone under orthodontic and occlusal loading[J]. J Med Biomechan, 2020, 35(1): 57-63.
|
9 |
Wu B, Yuan L, Liu M, et al. Construction of a viscoelastic model of human cancellous bone in alveolar bone based on bone mineral density distribution[J]. Materials (Basel), 2023, 16(23): 7427.
|
10 |
Wang F, Ahmad S, Al Mdallal Q, et al. Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boun-dary condition[J]. Sci Rep, 2022, 12(1): 2220.
|
11 |
Trcala M, Suchomelova P, Bosansky M, et al. The gene-ralized Kelvin chain-based model for an orthotropic viscoelastic material[J]. Mechan Tim Depend Mater, 2024, 28(3). DOI:10.1007/s11043-024-09678-4 .
|
12 |
Ortún-Terrazas J, Cegoñino J, Santana-Penín U, et al. A porous fibrous hyperelastic damage model for human periodontal ligament: application of a microcomputeri-zed tomography finite element model[J]. Int J Numer Method Biomed Eng, 2019, 35(4): e3176.
|
13 |
周梦雨, 李凡珠, 杨海波, 等. 基于非线性黏弹性本构模型的轮胎滚动和生热[J]. 高分子材料科学与工程, 2020, 36(3): 73-78.
|
|
Zhou MY, Li FZ, Yang HB, et al. Tire rolling and heat generation based on nonlinear viscoelastic model of pa-rallel rheological framework[J]. Polymer Mater Sci Eng, 2020, 36(3): 73-78.
|
14 |
Wang Z, Du S, Zhu H, et al. A finite element analysis of periodontal ligament fluid mechanics response to occlusal loading based on hydro-mechanical coupling model[J]. Arch Oral Biol, 2024, 164: 106008.
|
15 |
Rabiatul AR, Rianti D, Fatihhi SJ, et al. Influence of bone marrow characteristic and trabecular bone morpho-logy on bone remodelling process with FSI approach[J]. J Mater Design Appl, 2022, 236(8): 1682-1695.
|
16 |
Sharma G, Sultana A, Abdullah KM, et al. Epigenetic regulation of bone remodeling and bone metastasis[J]. Semin Cell Dev Biol, 2024, 154(Pt C): 275-285.
|
17 |
Di Martino A, Villari E, Poluzzi R, et al. Role of biophysical stimulation in multimodal management of vertebral compression fractures[J]. Comput Struct Biotech J, 2023, 21: 5650-5661.
|
18 |
Esposito L, Minutolo V, Gargiulo P, et al. Symmetry breaking and effects of nutrient walkway in time-dependent bone remodeling incorporating poroelasticity[J]. Biomech Model Mechanob, 2022, 21(3): 999-1020.
|
19 |
Lu XL, Huo B, Chiang V, et al. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow[J]. J Bone Miner Res, 2012, 27(3): 563-574.
|