| 1 | 
																						 
											 Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective[J]. Biomaterials, 1998, 19(18): 1621-1639.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Rocca M, Fini M, Giavaresi G, et al. Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep[J]. Biomaterials, 2002, 23(4): 1017-1023.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Robinson D, Aguilar L, Gatti A, et al. Load response of the natural tooth and dental implant: a comparative biomechanics study[J]. J Adv Prosthodont, 2019, 11(3): 169-178.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Pei X, Wang L, Chen C, et al. Contribution of the PDL to osteotomy repair and implant osseointegration[J]. J Dent Res, 2017, 96(8): 909-916.
											 											 | 
										
																													
																						| 5 | 
																						 
											 López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217.
											 											 | 
										
																													
																						| 6 | 
																						 
											 López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Weng Z, Wang Y, Ouchi T, et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies[J]. Stem Cells Transl Med, 2022, 11(4): 356-371.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Li Y, Wu Q, Wang Y, et al. Senescence of mesenchymal stem cells (review)[J]. Int J Mol Med, 2017, 39(4): 775-782.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Doron G, Temenoff JS. Culture substrates for improved manufacture of mesenchymal stromal cell therapies[J]. Adv Healthc Mater, 2021, 10(15): e2100016.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Koester J, Miroshnikova YA, Ghatak S, et al. Niche stif-fening compromises hair follicle stem cell potential du-ring ageing by reducing bivalent promoter accessibility[J]. Nat Cell Biol, 2021, 23(7): 771-781.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Segel M, Neumann B, Hill MFE, et al. Niche stiffness underlies the ageing of central nervous system progenitor cells[J]. Nature, 2019, 573(7772): 130-134.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Rolvien T, Amling M. Disuse osteoporosis: clinical and mechanistic insights[J]. Calcif Tissue Int, 2022, 110(5): 592-604.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Liu X, Hou W, He L, et al. AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation[J]. Colloids Surf B Biointerfaces, 2019, 182: 110332.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Cun X, Hosta-Rigau L. Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications[J]. Nanomaterials (Basel), 2020, 10(10): 2070.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Khudhair D, Bhatti A, Li Y, et al. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 1125-1142.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Tzaphlidou M. The role of collagen in bone structure: an image processing approach[J]. Micron, 2005, 36(7/8): 593-601.
											 											 | 
										
																													
																						| 17 | 
																						 
											 Alves L, Machado V, Botelho J, et al. Enhanced prolife-rative and osteogenic potential of periodontal ligament stromal cells[J]. Biomedicines, 2023, 11(5): 1352.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Aydin S, Şahin F. Stem cells derived from dental tissues[J]. Adv Exp Med Biol, 2019, 1144: 123-132.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Gao H, Li B, Zhao L, et al. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration[J]. Int J Nanomedicine, 2015, 10: 4009-4027.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Johmura Y, Yamanaka T, Omori S, et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders[J]. Science, 2021, 371(6526): 265-270.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence[J]. Nat Rev Cancer, 2015, 15(7): 397-408.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration[J]. Trends Biotechnol, 2012, 30(6): 315-322.
											 											 | 
										
																													
																						| 23 | 
																						 
											 Cipriano AF, Miller C, Liu H. Anodic growth and biomedical applications of TiO2 nanotubes[J]. J Biomed Na-notechnol, 2014, 10(10): 2977-3003.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Ryu WH, Park CJ, Kwon HS. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by ano-dization[J]. J Nanosci Nanotechnol, 2008, 8(10): 5467-5470.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Brammer KS, Oh S, Cobb CJ, et al. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface[J]. Acta Biomater, 2009, 5(8): 3215-3223.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Park J, Bauer S, Schlegel KA, et al. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topogra-phy for cell adhesion and differentiation[J]. Small, 2009, 5(6): 666-671.
											 											 | 
										
																													
																						| 27 | 
																						 
											 Lv L, Liu Y, Zhang P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3-K4 trimethylation[J]. Biomaterials, 2015, 39: 193-205.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches[J]. Nat Rev Mol Cell Biol, 2023, 24(1): 45-62.
											 											 | 
										
																													
																						| 29 | 
																						 
											 Sladitschek-Martens HL, Guarnieri A, Brumana G, et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING[J]. Nature, 2022, 607(7920): 790-798.
											 											 | 
										
																													
																						| 30 | 
																						 
											 Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores[J]. Cell, 2017, 171(6): 1397-1410.
											 											 | 
										
																													
																						| 31 | 
																						 
											 Gulati K, Zhang Y, Di P, et al. Research to clinics: clinical translation considerations for anodized nano-engineered titanium implants[J]. ACS Biomater Sci Eng, 2022, 8(10): 4077-4091.
											 											 | 
										
																													
																						| 32 | 
																						 
											 Zheng Y, Deng J, Wang G, et al. P53 negatively regulates the osteogenic differentiation in jaw bone marrow MSCs derived from diabetic osteoporosis[J]. Heliyon, 2023, 9(4): e15188.
											 											 | 
										
																													
																						| 33 | 
																						 
											 Lotz EM, Cohen DJ, Schwartz Z, et al. Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention[J]. Clin Oral Implants Res, 2020, 31(4): 374-387.
											 											 |