[1] |
Binnewies M, Roberts EW, Kersten K , et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018,24(5):541-550.
doi: 10.1038/s41591-018-0014-x
URL
pmid: 29686425
|
[2] |
Wu J, Waxman DJ . Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy[J]. Cancer Lett, 2018,419:210-221.
doi: 10.1016/j.canlet.2018.01.050
URL
pmid: 29414305
|
[3] |
Zhou F, Feng B, Yu H , et al. Tumor Microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade[J]. Adv Mater, 2019,31(14):e1805888.
doi: 10.1002/adma.201805888
URL
pmid: 30762908
|
[4] |
Mahmoudi K, Bouras A, Bozec D , et al. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans[J]. Int J Hyperthermia, 2018,34(8):1316-1328.
doi: 10.1080/02656736.2018.1430867
URL
pmid: 29353516
|
[5] |
Zhou J, Wang G, Chen Y , et al. Immunogenic cell death in cancer therapy: present and emerging inducers[J]. J Cell Mol Med, 2019,23(8):4854-4865.
doi: 10.1111/jcmm.14356
URL
pmid: 31210425
|
[6] |
Andersohn A, Garcia MI, Fan Y , et al. Aggregated and hyperstable damage-associated molecular patterns are released during ER stress to modulate immune function[J]. Front Cell Dev Biol, 2019,7:198.
doi: 10.3389/fcell.2019.00198
URL
pmid: 31620439
|
[7] |
Duan X, Chan C, Lin W . Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy[J]. Angew Chem Int Ed Engl, 2019,58(3):670-680.
doi: 10.1002/anie.201804882
URL
pmid: 30016571
|
[8] |
O’Donnell JS, Teng MWL, Smyth MJ . Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nat Rev Clin Oncol, 2019,16(3):151-167.
doi: 10.1038/s41571-018-0142-8
URL
pmid: 30523282
|
[9] |
Kim TK, Herbst RS, Chen L . Defining and understanding adaptive resistance in cancer immunotherapy[J]. Trends Immunol, 2018,39(8):624-631.
doi: 10.1016/j.it.2018.05.001
URL
pmid: 29802087
|
[10] |
Rapoport BL, Anderson R . Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy[J]. Int J Mol Sci, 2019,20(4):959.
doi: 10.3390/ijms20040959
URL
|
[11] |
Liu T, Ye YW, Zhu AL , et al. Hyperthermia combined with 5-fluorouracil promoted apoptosis and enhanced thermotolerance in human gastric cancer cell line SGC-7901[J]. Onco Targets Ther, 2015,8:1265-1270.
doi: 10.2147/OTT.S78514
URL
pmid: 26064061
|
[12] |
Tschoep-Lechner KE, Milani V, Berger F , et al. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer[J]. Int J Hyperthermia, 2013,29(1):8-16.
doi: 10.3109/02656736.2012.740764
URL
pmid: 23245336
|
[13] |
Issels RD, Lindner LH, Verweij J , et al. Effect of neoadjuvant chemotherapy plus regional hyperthermia on longterm outcomes among patients with localized high-risk soft tissue sarcoma: the EORTC 62961-ESHO 95 randomized clinical trial[J]. JAMA Oncol, 2018,4(4):483-492.
doi: 10.1001/jamaoncol.2017.4996
URL
pmid: 29450452
|
[14] |
史春生, 赵君, 金慧军 , 等. 热化疗对荷瘤鼠及口腔癌患者CTL与HSP70表达水平影响的观察[J]. 中华肿瘤防治杂志, 2011,18(18):26-30.
|
|
Shi CS, Zhao J, Jin HJ , et al. Observation of impact of thermo-chemotherapy on the expression levels of cytotoxic T-lymphocyte and HSP70 in tumor-bearing mice and patients with oral cancer[J]. Chin J Cancer Prev Treat, 2011,18(18):26-30.
|
[15] |
史春生, 金慧军, 赵君 , 等. 荷瘤鼠及口腔癌患者热化疗前后T淋巴细胞亚群、白细胞介素-2和肿瘤坏死因子-α水平的变化[J]. 华西口腔医学杂志, 2012,30(4):346-349.
doi: 10.3969/j.issn.1000-1182.2012.04.004
URL
|
|
Shi CS, Jin HJ, Zhao J , et al. Changes of T lymphocyte subsets, interleukin-2 and tumor necrosis factor-α in tumor-bearing mice and patients with oral cancer receiving thermo-chemotherapy[J]. West China J Stomatol, 2012,30(4):346-349.
|
[16] |
Nam J, Son S, Ochyl LJ , et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer[J]. Nat Commu, 2018,9(1):1074-1083.
|
[17] |
Adkins I, Sadilkova L, Hradilova N , et al. Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells[J]. Oncoimmunology, 2017,6(5):e1311433.
doi: 10.1080/2162402X.2017.1311433
URL
pmid: 28638734
|
[18] |
何飞 . HMGB1/RAGE轴介导内质网应激PERK/eIF2α/ATF4信号通路在急性呼吸窘迫综合征中的作用机制研究[D]. 南京: 南京大学, 2019.
|
|
He F . HMGB1-RAGE axis causes acute respiratory distress syndrome via PERK/eIF2α/ATF4 signaling in endoplasmic reticulum stress[D]. Nanjing: Nanjing University, 2019.
|
[19] |
Gameiro SR, Jammeh ML, Wattenberg MM , et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing[J]. Oncotarget, 2014,5(2):403-416.
|
[20] |
Lee SY, Lee NR, Cho DH , et al. Treatment outcome analysis of chemotherapy combined with modulated electro-hyperthermia compared with chemotherapy alone for recurrent cervical cancer, following irradiation[J]. Oncol Lett, 2017,14(1):73-78.
doi: 10.3892/ol.2017.6117
URL
pmid: 28693137
|
[21] |
Zhao J, Wang SZ, Tang XF , et al. Analysis of thermochemotherapy-induced apoptosis and the protein expressions of Bcl-2 and Bax in maxillofacial squamous cell carcinomas[J]. Med Oncol, 2011,28(Suppl 1):S354-S359.
|
[22] |
Chang HH, Lee H, Hu MK , et al. Notch1 expression predicts an unfavorable prognosis and serves as a therapeutic target of patients with neuroblastoma[J]. Clin Cancer Res, 2010,16(17):4411-4420.
doi: 10.1158/1078-0432.CCR-09-3360
URL
pmid: 20736329
|
[23] |
王琳, 高姗, 张瑞芳 , 等. JNK通路及HSP70在热化疗抑制人小细胞肺癌细胞生长中的作用[J]. 第二军医大学学报, 2008,29(2):142-145.
|
|
Wang L, Gao S, Zhang RF , et al. Role of JNK pathway and HSP70 in thermo-chemotherapy of lung cancer[J]. Acad J Second Military Med Univ, 2008,29(2):142-145.
|