华西口腔医学杂志 ›› 2021, Vol. 39 ›› Issue (1): 99-104.doi: 10.7518/hxkq.2021.01.015
收稿日期:
2019-04-16
修回日期:
2020-05-28
出版日期:
2021-02-01
发布日期:
2021-03-02
通讯作者:
李龙江
E-mail:644551880@qq.com;muzili63@163.com
作者简介:
李审绥,住院医师,硕士,E-mail:基金资助:
Li Shensui(), Wu Chenzhou, Qiao Xianghe, Li Chunjie, Li Longjiang()
Received:
2019-04-16
Revised:
2020-05-28
Online:
2021-02-01
Published:
2021-03-02
Contact:
Li Longjiang
E-mail:644551880@qq.com;muzili63@163.com
Supported by:
摘要:
颌面及颈部的恶性肿瘤是最常见的恶性肿瘤之一,治疗以手术治疗、放疗、化疗相结合为主,同时治疗存在着很多不良反应,如放疗存在诸多并发症,其中便以放射性唾液腺炎最为常见。此外还有口腔干燥、口腔黏膜炎、猛性龋、放射性颌骨骨髓炎等,导致吞咽、咀嚼问题以及味觉功能障碍等一系列变化。目前,放射性唾液腺炎的研究进展迅速,但其机制较为复杂,本文就此领域的相关研究成果作一综述。
中图分类号:
李审绥, 吴沉洲, 乔翔鹤, 李春洁, 李龙江. 辐射损伤唾液腺机制及治疗的研究进展[J]. 华西口腔医学杂志, 2021, 39(1): 99-104.
Li Shensui, Wu Chenzhou, Qiao Xianghe, Li Chunjie, Li Longjiang. Advances on mechanism and treatment of salivary gland in radiation injury[J]. West China Journal of Stomatology, 2021, 39(1): 99-104.
1 | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. |
2 | Ghosh-Laskar S, Yathiraj PH, Dutta D, et al. Prospective randomized controlled trial to compare 3-dimensional conformal radiotherapy to intensity-modulated radiothe-rapy in head and neck squamous cell carcinoma: long-term results[J]. Head Neck, 2016, 38(Suppl 1): E1481-E1487. |
3 | Kim JH, Kim KM, Jung MH, et al. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats[J]. Oncotarget, 2016, 7(20): 29143-29153. |
4 | Radfar L, Sirois DA. Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation: an animal model for human radiation-induced salivary gland injury[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003, 96(3): 267-274. |
5 | Kujan O, Othman R, Alshehri M, et al. Proliferative activity of myoepithelial cells in irradiated rabbit parotid and submandibular saliva glands[J]. J Int Oral Health, 2015, 7(Suppl 2): 1-5. |
6 | Ou D, Zhang Y, He X, et al. Magnetic resonance sialo-graphy for investigating major salivary gland duct system after in tensity-modulated radiotherapy of nasopharyngeal carcinoma[J]. Int J Clin Oncol, 2013, 18(5): 801-807. |
7 | Teshima K, Murakami R, Tomitaka E, et al. Radiation-induced parotid gland changes in oral cancer patients: correlation between parotid volume and saliva production[J]. Jpn J Clin Oncol, 2010, 40(1): 42-46. |
8 | Teshima K, Murakami R, Yoshida R, et al. Histopathological changes in parotid and submandibular glands of patients treated with preoperative chemoradiation therapy for oral cancer[J]. J Radiat Res, 2012, 53(3): 492-496. |
9 | Coppes RP, Stokman MA. Stem cells and the repair of radiation-induced salivary gland damage[J]. Oral Dis, 2011, 17(2): 143-153. |
10 | Limesand KH, Said S, Anderson SM. Suppression of radiation-induced salivary gland dysfunction by IGF-1[J]. PLoS One, 2009, 4(3): e4663. |
11 | Valdez IH, Atkinson JC, Ship JA, et al. Major salivary gland function in patients with radiation-induced xerostomia: flow rates and sialochemistry[J]. Int J Radiat Oncol Biol Phys, 1993, 25(1): 41-47. |
12 | Tateishi Y, Sasabe E, Ueta E, et al. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation[J]. Biochem Biophys Res Commun, 2008, 366(2): 301-307. |
13 | Konings AW, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity[J]. Int J Radiat Oncol, 2005, 62(4): 1187-1194. |
14 | O'Connell AC, Lillibridge CD, Zheng C, et al. Gamma-irradiation-induced cell cycle arrest and cell death in a human submandibular gland cell line: effect of E2F1 expression[J]. J Cell Physiol, 1998, 177(2): 264-273. |
15 | Dirix P, Nuyts S, van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: a lite-rature review[J]. Cancer, 2006, 107(11): 2525-2534. |
16 | Morgan-Bathke M, Hill GA, Harris ZI, et al. Autophagy correlates with maintenance of salivary gland function following radiation[J]. Sci Rep, 2014, 4: 5206. |
17 | Xiao N, Lin Y, Cao HB, et al. Neurotrophic factor GDNF promotes survival of salivary stem cells[J]. J Clin Invest, 2014, 124(8): 3364-3377. |
18 | Hai B, Yang ZH, Shangguan L, et al. Concurrent transient activation of Wnt/β-catenin pathway prevents radiation damage to salivary glands[J]. Int J Radiat Oncol Biol Phys, 2012, 83(1): e109-e116. |
19 | Hai B, Zhao QG, Deveau MA, et al. Delivery of sonic hedgehog gene repressed irradiation-induced cellular senescence in salivary glands by promoting DNA repair and reducing oxidative stress[J]. Theranostics, 2018, 8(4): 1159-1167. |
20 | Hai B, Qin LZ, Yang ZH, et al. Transient activation of hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation[J]. Clin Cancer Res, 2014, 20(1): 140-150. |
21 | Bartel-Friedrich S, Lautenschläger C, Holzhausen HJ, et al. Expression and distribution of tenascin in rat submandibular glands following irradiation[J]. Anticancer Res, 2010, 30(5): 1593-1598. |
22 | Henriksson R, Fröjd O, Gustafsson H, et al. Increase in mast cells and hyaluronic acid correlates to radiation-induced damage and loss of serous acinar cells in salivary glands: the parotid and submandibular glands differ in radiation sensitivity[J]. Br J Cancer, 1994, 69(2): 320-326. |
23 | Leask A, Abraham DJ. TGF-β signaling and the fibrotic response[J]. FASEB J, 2004, 18(7): 816-827. |
24 | Delporte C, Steinfeld S. Distribution and roles of aquaporins in salivary glands[J]. Biochim Biophys Acta, 2006, 1758(8): 1061-1070. |
25 | 丁冲, 李盛林, 吴立玲, 等. 水通道蛋白5(AQP5)在非脂筏中的表达增加介导人颌下腺的分泌[G]. 全国口腔生物医学学术年会暨“西湖国际”口腔医学高峰论坛论文汇编, 2014: 269-270. |
Ding C, Li SL, Wu LL, et al. Increased expression of aquaporin 5 (AQP5) in non-lipid rafts mediates secretion of human submandibular gland[G]. 2014 Chinese National Annual Conference on Oral Biomedicine, 2104: 269-270. | |
26 | Lai ZN, Yin H, Cabrera-Pérez J, et al. Aquaporin gene therapy corrects Sjögren's syndrome phenotype in mice[J]. Proc Natl Acad Sci USA, 2016, 113(20): 5694-5699. |
27 | Kulkarni K, Selesniemi K, Brown TL. Interferon-Gamma sensitizes the human salivary gland cell line, HSG, to tumor necrosis factor-alpha induced activation of dual apoptotic pathways[J]. Apoptosis, 2006, 11(12): 2205-2215. |
28 | Wang Z, Zourelias L, Wu C, et al. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion[J]. Gene Ther, 2015, 22(9): 739-749. |
29 | Zheng C, Baum BJ, Liu X, et al. Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methy-lation of hCMV promoter[J]. Gene Ther, 2015, 22(9): 758-766. |
30 | Laheij AM, Rasch CN, Brandt BW, et al. Proteins and peptides in parotid saliva of irradiated patients compared to that of healthy controls using SELDI-TOF-MS[J]. BMC Res Notes, 2015, 8: 639. |
31 | Xu JJ, Yan X, Gao RT, et al. Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig[J]. Int J Radiat Oncol Biol Phys, 2010, 78(3): 897-903. |
32 | Li YQ, Chen P, Haimovitz-Friedman A, et al. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation[J]. Cancer Res, 2003, 63(18): 5950-5956. |
33 | Joseph LJ, Bhartiya US, Raut YS, et al. Radioprotective effect of Ocimum sanctum and amifostine on the salivary gland of rats after therapeutic radioiodine exposure[J]. Cancer Biother Radiopharm, 2011, 26(6): 737-743. |
34 | Jensen SB, Pedersen AM, Vissink A, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact[J]. Support Care Cancer, 2010, 18(8): 1061-1079. |
35 | Zhang XM, Yang NY, Liu XJ, et al. Autonomic reinnervation and functional regeneration in autologous transplanted submandibular glands in patients with severe keratoconjunctivitis sicca[J]. Int J Oral Sci, 2018, 10(2): 14. |
36 | Shan XF, Xu H, Cai ZG, et al. Botulinum toxin A inhi-bits salivary secretion of rabbit submandibular gland[J]. Int J Oral Sci, 2013, 5(4): 217-223. |
37 | Xie S, Xu H, Lin B, et al. An experimental study on bo-tulinum toxin type A for the treatment of excessive secretion after submandibular gland transplantation in rabbits[J]. J Ophthalmol, 2016, 2016: 7058537. |
38 | Choi JS, An HY, Park IS, et al. Radioprotective effect of epigallocatechin-3-gallate on salivary gland dysfunction after radioiodine ablation in a murine model[J]. Clin Exp Otorhinolaryngol, 2016, 9(3): 244-251. |
39 | Dickinson D, DeRossi S, Yu HF, et al. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells[J]. Autoimmunity, 2014, 47(3): 177-184. |
40 | Saito K, Mori S, Date F, et al. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Fas(lpr) mice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2[J]. Autoimmunity, 2014, 47(1): 13-22. |
41 | Zhu Z, Pang BX, Iglesias-Bartolome R, et al. Prevention of irradiation-induced salivary hypofunction by rapamycin in swine parotid glands[J]. Oncotarget, 2016, 7(15): 20271-20281. |
42 | Liu XB, Cotrim A, Teos L, et al. Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction[J]. Nat Commun, 2013, 4: 1515. |
43 | Shanmugam PST, Dayton RD, Palaniyandi S, et al. Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia[J]. Hum Gene Ther, 2013, 24(6): 604-612. |
44 | Zhang L, Yu GY. Autotransplantation of submandibular gland for severe keratoconjunctivitis sicca[M]//McGurk M, Combers J. Controversies in the management of salivary gland disease[J]. 2nd ed. Oxford: Oxford University Press, 2013: 332-337. |
45 | Lim JY, Yi T, Choi JS, et al. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage[J]. Oral Oncol, 2013, 49(2): 136-143. |
46 | Schwarz S, Huss R, Schulz-Siegmund M, et al. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion[J]. Int J Oral Sci, 2014, 6(3): 154-161. |
47 | Zeidan YH, Xiao N, Cao HB, et al. Botulinum toxin confers radioprotection in murine salivary glands[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5): 1190-1197. |
[1] | 曹牛奔, 刘笑梦, 邓愉, 刘歆婵, 辛雨, 于维先. 活性氧/c-Jun氨基末端激酶/核因子-κB信号分子通过调控凋亡参与牙周炎诱导肝损伤[J]. 华西口腔医学杂志, 2022, 40(5): 532-540. |
[2] | 魏卓, 周昊, 费伟, 聂雄, 李明芳. SOX2基因对唾液腺腺样囊性癌细胞生物学特性的影响[J]. 华西口腔医学杂志, 2022, 40(3): 341-349. |
[3] | 代晓华, 王冠华, 连小丽, 颜艳, 王悦, 邹慧儒, 刘浩. 酸性培养对人舌鳞癌细胞增殖、凋亡、迁移能力的影响及其机制研究[J]. 华西口腔医学杂志, 2021, 39(5): 540-546. |
[4] | 周海霞, 王璐瑶, 陈帅, 王丹丹, 方政. circ_0005379通过调控miR-17-5p/酰基辅酶A氧化酶1轴抑制口腔鳞状细胞癌的发展进程[J]. 华西口腔医学杂志, 2021, 39(4): 425-433. |
[5] | 王少如, 孙伟, 周男, 赵开, 李文健, 迟增鹏, 王莹, 王奇民, 童磊, 何宗轩, 韩红钰, 陈正岗. 体外沉默异戊二烯基半胱氨酸羧基甲基转移酶对人舌鳞状细胞癌细胞增殖和凋亡的影响[J]. 华西口腔医学杂志, 2021, 39(1): 64-73. |
[6] | 刘佳楠, 马曌磊, 苏荣健, 黄克强. zeste基因增强子同源物2抑制剂GSK126对舌鳞状细胞癌细胞增殖与凋亡的影响[J]. 华西口腔医学杂志, 2020, 38(5): 495-501. |
[7] | 孙巧珍, 石凡, 罗丹, 徐婷, 王升志. 热化疗诱导损伤相关分子模式表达增强口腔鳞状细胞癌细胞免疫原性的研究[J]. 华西口腔医学杂志, 2020, 38(5): 502-508. |
[8] | 岳增文,王树斌,刘进忠. 过表达大肿瘤抑制因子2对口腔鳞状细胞癌细胞增殖和凋亡的影响[J]. 华西口腔医学杂志, 2018, 36(6): 609-612. |
[9] | 方政, 邱峰, 赵军方, 孙强, 乔彬, 李光辉, 李新明. 半乳糖凝集素-3基因在口腔鳞状细胞癌增殖、侵袭、凋亡中的作用及机制研究[J]. 华西口腔医学杂志, 2018, 36(4): 404-409. |
[10] | 安洋, 张慧宇, 郭俊峰, 李鑫, 杨阳, 张纲, 谭颖徽. 降钙素基因相关肽对血清饥饿作用下MC3T3-E1成骨细胞凋亡和自噬的影响[J]. 华西口腔医学杂志, 2017, 35(2): 133-138. |
[11] | 于海蛟,申玉芹,刘引,高涵,周岳,胡天琦,林崇韬. 特定序列寡核苷酸MT01对牙龈卟啉单胞菌感染的成骨细胞的增殖、细胞周期及凋亡的影响[J]. 华西口腔医学杂志, 2015, 33(6): 617-621. |
[12] | 唐翠竹,文勇,顾伟亭,张冰,张云鹏,姬雅雯,徐欣,. 小干扰RNA沉默YAP基因对人牙周膜干细胞增殖凋亡的影响[J]. 华西口腔医学杂志, 2015, 33(6): 622-626. |
[13] | 丁弦 夏晨蕾 贺苗 孙文娜 王芳 姜文心 张彩霞 王爽玉 张强 姚如永 袁晓. 钙调神经磷酸酶-T细胞核因子信号通路在应力诱导成肌细胞凋亡中的作用[J]. 华西口腔医学杂志, 2015, 33(5): 456-461. |
[14] | 严嵚 苏玉婷 周月鹏 朱海涛 杨细虎 许建辉. 白细胞介素-23通过无翅基因相关整合位点/β-连环蛋白通路增强舌鳞状细胞癌抗凋亡及耐药能力[J]. 华西口腔医学杂志, 2015, 33(3): 249-254. |
[15] | 张颖 马林 李健 钟鸣 张凯强 顾何锋. 过量氟诱导成釉细胞钙超载及细胞凋亡的实验研究[J]. 华西口腔医学杂志, 2014, 32(6): 542-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||