1 |
耿玉东, 王树斌, 卢泰青, 等. 长链非编码RNA肌动蛋白纤维相关蛋白1-反义RNA1在口腔鳞状细胞癌中的表达及其相关功能[J]. 华西口腔医学杂志, 2019, 37(6): 594-601.
|
|
Geng YD, Wang SB, Lu TQ, et al. Expression and functions of long non-coding RNA actin filament-associated protein1-antisense RNA1 in oral squamous cell carcinoma[J]. West China J Stomatol, 2019, 37(6): 594-601.
|
2 |
Vucicevic Boras V, Fucic A, Virag M, et al. Significance of stroma in biology of oral squamous cell carcinoma[J]. Tumori, 2018, 104(1): 9-14.
|
3 |
Qu XH, Shi YL, Ma Y, et al. LncRNA DANCR regulates the growth and metastasis of oral squamous cell carcinoma cells via altering miR-216a-5p expression[J]. Hum Cell, 2020, 33(4): 1281-1293.
|
4 |
Chen ZF, Wang Y, Sun LL, et al. LncRNA SNHG20 enhances the progression of oral squamous cell carcinoma by regulating the miR-29a/DIXDC1/Wnt regulatory axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5436-5445
|
5 |
Liu L, Zhan Y, Huang Y, et al. LncRNA FGD5-AS1 can be predicted as therapeutic target in oral cancer[J]. J Oral Pathol Med, 2020, 49(9): 243-252.
|
6 |
Li X, Xiao X, Chang R, et al. Comprehensive bioinformatics analysis identifies lncRNA HCG22 as a migration inhibitor in esophageal squamous cell carcinoma[J]. J Cell Biochem, 2020, 121(1): 468-481.
|
7 |
Jiang D, Zhang Y, Yang L, et al. Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1[J]. J Cell Physiol, 2020, 235(2): 1711-1722.
|
8 |
Yin J, Zeng X, Ai Z, et al. Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in oral cancer[J]. BMC Med Genomics, 2020, 13(1): 84-97.
|
9 |
程兰欣, 朱卓立. 具核梭杆菌与口腔鳞状细胞癌关系的研究进展[J]. 重庆医学, 2020, 49(16): 2767-2770, 2774.
|
|
Cheng LX, Zhu ZL. Advances in the relationship between Fusobacterium nucleatum and oral squamous cell carcinoma[J]. Chongqing Med, 2020, 49(16): 2767-2770, 2774.
|
10 |
王倩, 侯大为. 口腔鳞状细胞癌发病及转移机制研究进展[J]. 口腔医学研究, 2018, 34(11): 1164-1167.
|
|
Wang Q, Hou DW. Research progress in pathogenesis of oral squamous cell carcinoma[J]. J Oral Sci Res, 2018, 34(11): 1164-1167.
|
11 |
王婷梅, 曲丽娜, 李莹辉. LncRNA的结构、功能及其与疾病的关系[J]. 中国生物化学与分子生物学报, 2015, 31(7): 659-666.
|
|
Wang TM, Qu LN, Li YH. Structures and functions of long non-coding RNAs and its roles in diseases[J]. Chin J Biochem Mol Biol, 2015, 31(7): 659-666.
|
12 |
Gao P, Fan R, Ge T. SNHG20 serves as a predictor for prognosis and promotes cell growth in oral squamous cell carcinoma[J]. Oncol Lett, 2019, 17(1): 951-957.
|
13 |
Zhang L, Meng X, Zhu XW, et al. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications[J]. Mol Cancer, 2019, 18(1): 102.
|
14 |
黄佳欣, 邵婷如, 陈跃川, 等. 长链非编码RNA在口腔鳞状细胞癌中的研究进展[J]. 分子诊断与治疗杂志, 2018, 10(2): 120-124.
|
|
Huang JX, Shao TR, Chen YC, et al. The progress of lncRNAs in oral squamous cell carcinoma [J]. J Mol Diagn Ther, 2018, 10(2): 120-124.
|
15 |
Yatagai Y, Hirota T, Sakamoto T, et al. Variants near the HLA complex group 22 gene (HCG22) confer increased susceptibility to late-onset asthma in Japanese populations[J]. J Allergy Clin Immunol, 2016, 138(1): 281-283.
|
16 |
Jeong S, Patel N, Edlund CK, et al. Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension[J]. Invest Ophthalmol Vis, 2015, 56(4): 2737-2748.
|
17 |
Feng L, Houck JR, Lohavanichbutr P, et al. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa[J]. Oncotarget, 2017, 8(19): 31521-31531.
|
18 |
Zhong X, Coukos G, Zhang L. miRNAs in human cancer[J]. Methods Mol Biol, 2012, 822: 295-306.
|
19 |
武丹, 曾林祥. 长链非编码RNA的微RNA海绵作用与呼吸系统疾病[J]. 中国生物化学与分子生物学报, 2019, 35(5): 499-503.
|
|
Wu D, Zeng LX. The roles of long non-coding RNAs functioning as MicroRNA sponge in respiratory diseases[J]. Chin J Biochem Mol Biol, 2019, 35(5): 499-503.
|
20 |
Shen Y, Xu J, Pan X, et al. LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis[J]. Cell Death Dis, 2020, 11(4): 278.
|
21 |
Zhang J, Wang L, Jiang J, et al. The lncRNA SNHG15/miR-18a-5p axis promotes cell proliferation in ovarian cancer through activating Akt/mTOR signaling pathway[J]. J Cell Biochem, 2020, 121(12): 4699-4710.
|
22 |
王琴, 何峰, 刘强, 等. TNF-α通过调控miR-650/LATS1表达对结肠癌细胞增殖和凋亡的影响及其机制研究[J]. 中国免疫学杂志, 2020, 36(6): 699-706.
|
|
Wang Q, He F, Liu Q, et al. Effects of TNF-α on proliferation and apoptosis of colon cancer cells by regulating expression of miR-650/LATS1 and its mechanism[J]. Chin J Immun, 2020, 36(6): 699-706.
|
23 |
Han LL, Yin XR, Zhang SQ, et al. miR-650 promotes the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by directly inhibiting LATS2 expression[J]. Cell Physiol Biochem, 2018, 51(3): 1179-1192.
|
24 |
Tang XQ, Ding YJ, Wang XQ, et al. miR-650 promotes non-small cell lung cancer cell proliferation and invasion by targeting ING4 through Wnt-1/β-catenin pathway[J]. Oncol Lett, 2019, 18(5): 4621-4628.
|
25 |
Ningning S, Libo S, Chuanbin W, et al. MiR-650 regulates the proliferation, migration and invasion of human oral cancer by targeting growth factor independent 1 (Gfi1)[J]. Biochimie, 2019, 156: 69-78.
|