华西口腔医学杂志 ›› 2019, Vol. 37 ›› Issue (2): 115-123.doi: 10.7518/hxkq.2019.02.001
• 专家共识 • 下一篇
甘雪琦1,肖宇2,马瑞阳1,黄椿棚2,吴尧3,杨帮成3,杨齐4,包崇云2,于海洋1()
收稿日期:
2018-12-07
修回日期:
2019-01-15
出版日期:
2019-04-01
发布日期:
2019-04-28
通讯作者:
于海洋
E-mail:yhyang6812@foxmail.com
作者简介:
甘雪琦,副教授,博士,E-mail: xueqigan@scu.edu.cn
基金资助:
Xueqi Gan1,Yu Xiao2,Ruiyang Ma1,Chunpeng Huang2,Yao Wu3,Bangcheng Yang3,Qi Yang4,Chongyun Bao2,Haiyang Yu1()
Received:
2018-12-07
Revised:
2019-01-15
Online:
2019-04-01
Published:
2019-04-28
Contact:
Haiyang Yu
E-mail:yhyang6812@foxmail.com
Supported by:
摘要:
目前牙种植体的生物力学研究主要集中于种植体-骨结合界面及种植牙内各个部件连接界面的力学损伤及增强机制,以及如何获得更好的牙种植体-基台复合体的整体机械强度和服役寿命等方面的研究。目前有关生物力学的研究,主要通过电阻应力测试方法、光弹应力分析法、数字图像相关分析法、有限元分析法、种植体-骨结合强度力学测试和机械性能测试法对实验样本进行综合评价。目前有限元分析法是最常见的牙种植体应力分布研究法,而静态压力实验和疲劳实验是最常见的机械强度测试研究方法。本文通过对这些研究方法的原理、应用范围及特点的介绍和对实验结果影响因素的梳理,给相关领域研究者们提供方法学的指导,并可拓展种植体的设计思路。
中图分类号:
甘雪琦,肖宇,马瑞阳,黄椿棚,吴尧,杨帮成,杨齐,包崇云,于海洋. 牙种植体的生物力学研究[J]. 华西口腔医学杂志, 2019, 37(2): 115-123.
Xueqi Gan,Yu Xiao,Ruiyang Ma,Chunpeng Huang,Yao Wu,Bangcheng Yang,Qi Yang,Chongyun Bao,Haiyang Yu. Expert consensus on biomechanical research of dental implant[J]. West China Journal of Stomatology, 2019, 37(2): 115-123.
[1] |
Asvanund P . A strain gauge analysis comparing external and internal implant-abutment connections[J]. Implant Dent, 2014,23(2):206-211.
doi: 10.1097/ID.0000000000000063 URL |
[2] | Waly KM, Elwakad MT, Eldosoky MAA , et al. Effect of bone height on stresses developed around dental implant using strain gauge (in-vitro study)[J]. Int J Eng Res Develop, 2014,10(9):20-26. |
[3] | Figueirêdo EP, Sigua-Rodriguez EA, Pimentel MJ , et al. Photoelastic analysis of fixed partial prosjournal crown height and implant length on distribution of stress in two dental implant systems[J]. Int J Dent, 2014: 206723. |
[4] |
Geramizadeh M, Katoozian H, Amid R , et al. Comparison of finite element results with photoelastic stress analysis around dental implants with different threads[J]. Dent Med Probl, 2018,55(1):17-22.
doi: 10.17219/dmp/85077 URL |
[5] |
Tiossi R, Lin LS, Rodrigues RC , et al. Digital image correlation analysis of the load transfer by implant-supported restorations[J]. J Biomech, 2011,44(6):1008-1013.
doi: 10.1016/j.jbiomech.2011.02.015 URL |
[6] |
Li JY, Fok ASL, Satterthwaite J , et al. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation[J]. Dent Mater, 2009,25(5):582-588.
doi: 10.1016/j.dental.2008.11.001 URL |
[7] |
Tung SH, Shih MH, Kuo JC . Application of digital image correlation for anisotropic plastic deformation during tension testing[J]. Opt Lasers Eng, 2010,48(5):636-641.
doi: 10.1016/j.optlaseng.2009.09.011 URL |
[8] | 王楠, 李恩普, 汤忠斌 , 等. 二维数字图像相关方法的拉伸实验误差分析[J]. 光学仪器, 2012,34(3):5-12. |
Wang N, Li EP, Tang ZB , et al. An investigation of the experimental error of 2-D DIC method applied to tensile strain measurement[J]. Opt Instru, 2012,34(3):5-12. | |
[9] |
Peixoto RF, Macedo AP, Martinelli J , et al. A digital image correlation analysis of strain generated by 3-unit implant-supported fixed dental prosjournal[J]. Implant Dent, 2017,26(4):567-573.
doi: 10.1097/ID.0000000000000588 URL |
[10] | Nenad M, Ivan T, Dušan Š , et al. Analysis of the effect of implant distance from the surrounding structure, in the PMMA block model[J]. Procedia Struct Integr, 2016(2):1260-1265. |
[11] |
Clelland NL, Yilmaz B, Seidt JD . Three-dimensional image correlation analyses for strains generated by cement and screw-retained implant prostheses[J]. Clin Implant Dent Relat Res, 2013,15(2):271-282.
doi: 10.1111/cid.2013.15.issue-2 URL |
[12] | 刘宝林 . 口腔种植学[M]. 北京: 人民卫生出版社, 2011: 87-92. |
Liu BL. Dental implantology[M]. Beijing: People’s Medical Publishing House, 2011: 87-92. | |
[13] | 王姝, 李琼, 金武龙 . 有限元法在口腔种植领域的研究进展[J]. 中华老年口腔医学杂志, 2018,16(2):125-128. |
Wang S, Li Q, Jin WL . The research progress of finite element method in dental implants[J]. Chin J Geriatric Dent, 2018,16(2):125-128. | |
[14] | 王晓洁 . 牙种植体的三维有限元分析和生物密封研究[D]. 成都: 四川大学, 2005. |
Wang XJ . Three-dimensional finite element analysis and bioseal study of dental implants[D]. Chengdu: Sichuan University, 2005. | |
[15] |
Holmgren EP, Seckinger RJ, Kilgren LM , et al. Evaluating parameters of osseointegrated dental implants using finite element analysis—a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction[J]. J Oral Implantol, 1998,24(2):80-88.
doi: 10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2 URL |
[16] | 陈新民 . 口腔生物力学[M]. 北京: 科学出版社, 2010: 335-336. |
Chen XM. Oral biomechanics[M]. Beijing: Science Press, 2010: 335-336. | |
[17] | 王宗篪, 谢培庆, 庄国铭 , 等. 仿生种植牙三维有限元模型[J]. 三明学院学报, 2006,23(2):137-140. |
Wang ZC, Xie PQ, Zhuang GM , et al. The three-dimensional finite element model of bionic dental implant[J]. J Sanming Univ, 2006,23(2):137-140. | |
[18] |
Seong WJ, Grami S, Jeong SC , et al. Comparison of push-in versus pull-out tests on bone-implant interfaces of rabbit tibia dental implant healing model[J]. Clin Implant Dent Relat Res, 2013,15(3):460-469.
doi: 10.1111/cid.2013.15.issue-3 URL |
[19] |
Beer A, Gahleitner A, Holm A , et al. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible[J]. Clin Oral Implants Res, 2003,14(5):616-620.
doi: 10.1034/j.1600-0501.2003.00932.x URL |
[20] | 栗兴超, 董福生, 李向军 , 等. 不同颈部结构钛人工牙种植体的骨结合性能研究[J]. 现代口腔医学杂志, 2017,31(3):129-132. |
Li XC, Dong FS, Li XJ , et al. Study on the osseointegration of titanium dental implant with different neck structure[J]. J Modern Stomatol, 2017,31(3):129-132. | |
[21] |
Li DH, Ferguson SJ, Beutler T , et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants[J]. J Biomed Mater Res A, 2002,60(2):325-332.
doi: 10.1002/(ISSN)1097-4636 URL |
[22] |
Huang HM, Lee SY, Yeh CY , et al. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach[J]. Clin Oral Implants Res, 2002,13(1):65-74.
doi: 10.1034/j.1600-0501.2002.130108.x URL |
[23] |
Nkenke E, Hahn M, Weinzierl K , et al. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants[J]. Clin Oral Implants Res, 2003,14(5):601-609.
doi: 10.1034/j.1600-0501.2003.00937.x URL |
[24] |
Lee SY, Kim SJ, An HW , et al. The effect of the thread depth on the mechanical properties of the dental implant[J]. J Adv Prosthodont, 2015,7(2):115-121.
doi: 10.4047/jap.2015.7.2.115 URL |
[25] | 李璁 . 纯钛种植体表面不同粗化处理对种植体强度的影响[D]. 石家庄: 河北医科大学, 2016. |
Li C . Effects of different roughening treatments on the strength of pure titanium implants[D]. Shijiazhuang: Hebei Medical University, 2016. | |
[26] | 栗兴超, 董福生, 李向军 , 等. 表面粗化处理不均衡螺纹钛人工牙种植体的疲劳性能研究[J]. 现代口腔医学杂志, 2017,31(4):202-205, 234. |
Li XC, Dong FS, Li XJ , et al. Study on the fatigue performance of the uneven-threaded titanium dental implants treated by surface roughening[J]. J Modern Stomatol, 2017,31(4):202-205, 234. | |
[27] | 张波 . 牙种植体生物力学评价研究进展[J]. 中国实用口腔科杂志, 2014,7(9):566-571. |
Zhang B . Advances on the biomechanical evaluation methods of dental implant[J]. Chin J Pract Stomatol, 2014,7(9):566-571. | |
[28] |
Soliman TA, Tamam RA, Yousief SA , et al. Assessment of stress distribution around implant fixture with three different crown materials[J]. Tanta Dent J, 2015,12(4):249-258.
doi: 10.1016/j.tdj.2015.08.001 URL |
[29] | 张永丽 . 四种不同形状种植体应力分布比较的三维有限元分析[D]. 济南: 山东大学, 2003. |
Zhang YL . Three-dimensional finite element analysis of stress distribution of implants with four different shapes[D]. Jinan: Shandong University, 2003. | |
[30] |
Lee DW, Choi YS, Park KH , et al. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study[J]. Clin Oral Implants Res, 2007,18(4):465-470.
doi: 10.1111/clr.2007.18.issue-4 URL |
[31] |
Oswal M, Amasi U, Oswal M , et al. Influence of three different implant thread designs on stress distribution: a three-dimensional finite element analysis[J]. J Indian Prosthodon Soc, 2016,16(4):359-365.
doi: 10.4103/0972-4052.191283 URL |
[32] | 马洁, 王维丽, 雷蕾 , 等. 种植体颈部不同螺距动态负载的生物力学分析[J]. 解放军医学院学报, 2016,37(7):784-787, 797. |
Ma J, Wang WL, Lei L , et al. Biomechanical analysis of stress distribution of dental implant with different neck thread pitch design under dynamic loading[J]. Acad J Chin PLA Med School, 2016,37(7):784-787, 797. | |
[33] | 王维丽, 马洁, 李鑫 , 等. 反支撑形螺纹种植体即刻负载时应力分布的三维有限元分析[J]. 口腔颌面修复学杂志, 2016,17(4):211-215. |
Wang WL, Ma J, Li X , et al. Analysis of the biomechanics stress distribution of the reverse buttress thread implant under immediate loading: a three dimensional finite element study[J]. Chin J Prosthodont, 2016,17(4):211-215. | |
[34] |
Kang YI, Lee DW, Park KH , et al. Effect of thread size on the implant neck area: preliminary results at 1 year of function[J]. Clin Oral Implants Res, 2012,23(10):1147-1151.
doi: 10.1111/clr.2012.23.issue-10 URL |
[35] |
Rubo JH, Capello Souza EA . Finite-element analysis of stress on dental implant prosjournal[J]. Clin Implant Dent Relat Resh, 2009,12(2):105-113.
doi: 10.1111/cid.2010.12.issue-2 URL |
[36] |
Petrie CS, Williams JL . Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest[J]. Clin Oral Implants Res, 2005,16(4):486-494.
doi: 10.1111/j.1600-0501.2005.01132.x URL |
[37] | Tada S, Stegaroiu R, Kitamura E , et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis[J]. Int J Oral Maxillofac Implants, 2003,18(3):357-368. |
[38] |
Meijer HJ, Kuiper JH, Starmans FJ , et al. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible[J]. J Prosthet Dent, 1992,68(1):96-102.
doi: 10.1016/0022-3913(92)90293-J URL |
[39] | 董福生, 董玉英, 邢汝东 , 等. 种植体长度对骨界面应力分布影响的三维有限元分析[J]. 中国口腔种植学杂志, 2001,6(3):106-108. |
Dong FS, Dong YY, Xing RD , et al. Three-dimensional finite element method analysis of stress distribution around dental implants to estimate the influence of the length[J]. Chin J Oral Implant, 2001,6(3):106-108. | |
[40] |
Borie E , Orsi IA, de Araujo CP . The influence of the connection, length and diameter of an implant on bone biomechanics[J]. Acta Odontol Scand, 2015,73(5):321-329.
doi: 10.3109/00016357.2014.961957 URL |
[41] |
Lin CL, Chang SH, Chang WJ , et al. Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based Taguchi method[J]. Eur J Oral Sci, 2007,115(5):408-416.
doi: 10.1111/eos.2007.115.issue-5 URL |
[42] | 陈轶珺 . 氧化锆全瓷角度基台的三维有限元应力分析[J]. 口腔医学研究, 2008,24(3):317-319. |
Chen YJ . Finite element analysis of zirconia angled ceramic abutment[J]. J Oral Sci Res, 2008,24(3):317-319. | |
[43] | Visser A, Raghoebar GM, Meijer HJ , et al. Mandibular overdentures supported by two or four endosseous implants. A 5-year prospective study[J]. Clin Oral Implants Res, 2005,16(1):19-25. |
[44] |
Liu J, Pan S, Dong J , et al. Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis[J]. J Dent, 2013,41(3):241-249.
doi: 10.1016/j.jdent.2012.11.008 URL |
[45] | 简波, 宋应亮, 李德华 , 等. 下无牙颌覆盖义齿四颗种植体套简冠固位位置的优化设计及力学分析[J]. 中国口腔种植学杂志, 2009,14(2):98-99. |
Jian B, Song YL, Li DH , et al. The optimizing designs and mechanics analyses of implants location for the edentulous mandibular overdenture which be retained by four implants and telescopic crowns[J]. Chin J Oral Implant, 2009,14(2):98-99. | |
[46] | 张少锋, 马轩祥, 欧阳官 , 等. 加载部位对种植全口义齿应力的影响[J]. 实用口腔医学杂志, 1997,13(3):37-39. |
Zhang SF, Ma XX, Ouyang G , et al. Effect of loading position on stress of implant complete denture[J]. J Pract Stomatol, 1997,13(3):37-39. | |
[47] | Hong HR, Pae A, Kim Y , et al. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis[J]. Int J Oral Maxillofac Implants, 2012,27(5):e69-e76. |
[48] |
Elias CN, Rocha FA, Nascimento AL , et al. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants[J]. J Mechan Behav Biomed Mater, 2012,16(1):169-180.
doi: 10.1016/j.jmbbm.2012.10.010 URL |
[49] |
Kong L, Sun YY, Hu KJ , et al. Selections of the cylinder implant neck taper and implant end fillet for optimal biomechanical properties: a three-dimensional finite element analysis[J]. J Biomech, 2008,41(5):1124-1130.
doi: 10.1016/j.jbiomech.2007.12.013 URL |
[50] | 贾晓瑞, 辛海涛, 张强 , 等. 超细晶纯钛种植体表面微弧氧化处理的实验研究[J]. 牙体牙髓牙周病学杂志, 2015,25(3):158-161, 172. |
Jia XR, Xin HT, Zhang Q , et al. Surface treatment of ultrafine-grained titanium implant by micro-arc oxidation[J]. Chin J Conserv Dent, 2015,25(3):158-161, 172. | |
[51] | 丁鹏飞, 徐欣 . 微弧氧化表面处理后的种植体性能改良[J]. 滨州医学院学报, 2015(3):224-225. |
Ding PF, Xu X . Improvement of implant properties after micro-arc oxidation surface treatment[J]. J Binzhou Med Univ, 2015(3):224-225. | |
[52] | Jemat A, Ghazali MJ, Razali M , et al. Surface modifications and their effects on titanium dental implants[J]. Biomed Res Int, 2015,2015(6):791725. |
[53] | 贺刚, 陈治清, 盛祖立 . 纯钛种植体表面纳米TiO2生物活性涂层的构建[J]. 中国口腔种植学杂志, 2008,13(3):101-104, 135. |
He G, Chen ZQ, Sheng ZL . The construction of nano-TiO2 biocoating on titanium surface[J]. Chin J Oral Implant, 2008,13(3):101-104, 135. | |
[54] |
Bozkaya D, Muftu S, Muftu A . Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis[J]. J Prosthet Dent, 2004,92(6):523-530.
doi: 10.1016/j.prosdent.2004.07.024 URL |
[55] |
Pita MS, Anchieta RB, Barão VAR , et al. Prosthetic platforms in implant dentistry[J]. J Craniofac Surg, 2011,22(6):2327-2331.
doi: 10.1097/SCS.0b013e318232a706 URL |
[56] | Gehrke P, Dhom G, Brunner J , et al. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening[J]. Quintessence Int, 2006,37(1):19-26. |
[57] |
Adatia ND, Bayne SC, Cooper LF , et al. Fracture resistance of yttria-stabilized zirconia dental implant abutments[J]. J Prosthodont, 2009,18(1):17-22.
doi: 10.1111/jopr.2008.18.issue-1 URL |
[58] |
Elsayed A, Wille S, Al-Akhali M , et al. Comparison of fracture strength and failure mode of different ceramic implant abutments[J]. J Prosthet Dent, 2017,117(4):499-506.
doi: 10.1016/j.prosdent.2016.06.018 URL |
[59] | Nguyen HQ, Tan KB, Nicholls JI . Load fatigue performance of implant-ceramic abutment combinations[J]. Int J Oral Maxillofac Implants, 2009,24(4):636-646. |
[60] |
Jo JY, Yang DS, Huh JB , et al. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems[J]. J Adv Prosthodont, 2014,6(6):491-497.
doi: 10.4047/jap.2014.6.6.491 URL |
[61] |
Kim DJ, Lee MH, Lee DY , et al. Mechanical properties, phase stability, and biocompatibility of (Y, Nb)-TZP/Al2O3 composite abutments for dental implant[J]. J Biomed Mater Res, 2000,53(4):438-443.
doi: 10.1002/(ISSN)1097-4636 URL |
[62] | Lee T, Ueno T, Nomura N , et al. Titanium-zirconium binary alloy as dental implant material: analysis of the influence of compositional change on mechanical properties and in vitro biologic response[J]. Int J Oral Maxillofac Implants, 2016,31(3):547-554. |
[63] | Basílio MA, Delben JA, Cesar PF , et al. Failure modes of Y-TZP abutments with external hex implant-abutment connection determined by fractographic analysis[J]. J Mech Behav Biomed Mater, 2016(60):187-194. |
[64] | Bordin D, Coelho PG, Bergamo ETP , et al. The effect of DLC-coating deposition method on the reliability and mechanical properties of abutment’s screws[J]. Dent Mater, 2018,34(6):e128-e137. |
[65] |
Prado CJ, Neves FD, Soares CJ , et al. Influence of abutment screw design and surface coating on the bending flexural strength of the implant set[J]. J Oral Implantol, 2014,40(2):123-128.
doi: 10.1563/AAID-JOI-D-11-00116 URL |
[66] | Xie YN, Zhou J, Wei QP , et al. Improving the long-term stability of Ti6Al4V abutment screw by coating micro/nano-crystalline diamond films[J]. J Mech Behav Biomed Mater, 2016(63):174-182. |
[1] | 王良涛, 李珊, 陆豆豆, 陈铮. 基于正交试验梯度多孔牙种植体结构的设计研究[J]. 华西口腔医学杂志, 2023, 41(6): 647-652. |
[2] | 马典, 钱捷. 贴面式瓷嵌体修复上颌第一前磨牙穿髓型非龋性颈部缺损的三维有限元应力分析[J]. 华西口腔医学杂志, 2023, 41(5): 541-553. |
[3] | 晚晓芳, 何海燕, 吕佳岭, 伍宇婕, 钟冠男, 徐晓梅. 周期性张应力作用下Hippo-YAP信号通路调控人牙周膜细胞自噬[J]. 华西口腔医学杂志, 2023, 41(3): 260-268. |
[4] | 周洁, 甘雪琦, 卢嘉仪, 范林莉, 朱卓立. 牙种植体作支抗局部正畸直立近中倾斜下颌第二磨牙1例[J]. 华西口腔医学杂志, 2020, 38(6): 708-711. |
[5] | 张帅, 吕川, 李进红, 朱保民, 王维倩. 基台颈部缓冲层对种植体应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2020, 38(5): 537-540. |
[6] | 翟晓阳,张静亚,张三柯,姜川静,邱晓霞. 两种边缘设计的髓腔固位冠修复不同缺损下颌第一磨牙的有限元分析[J]. 华西口腔医学杂志, 2019, 37(5): 480-484. |
[7] | 马婷婷,宋勇,王俊林,刘彦杰,陈裕聪,何浒杰,王博灏. 基于生物力学分析的分侧口内外联合法治疗颞下颌关节前脱位[J]. 华西口腔医学杂志, 2019, 37(3): 295-298. |
[8] | 柏思羽,陈悦,戴红卫,黄兰. 机械压应力下骨硬化蛋白对成牙骨质细胞功能影响及机制的体外研究[J]. 华西口腔医学杂志, 2019, 37(2): 162-167. |
[9] | 王爽,孙江,于雁云. 三壁骨缺损对牙周膜应力影响的三维有限元分析[J]. 华西口腔医学杂志, 2019, 37(1): 42-47. |
[10] | 容明灯, 黄雁红, 卢海宾, 徐格林, 李少冰, 苏媛, 陈沛, 姜盼, 张雪洋. 显微牙周外科技术在种植体周附着龈增宽术中的应用[J]. 华西口腔医学杂志, 2018, 36(1): 71-75. |
[11] | 李传花, 王志峰, 朱丽娜, 范欣, 蓝菁. 牙龈卟啉单胞菌精氨酸特异性牙龈素基因疫苗预防比格犬种植体周围炎的实验研究[J]. 华西口腔医学杂志, 2018, 36(1): 76-81. |
[12] | 王如意, 赵志河, 李宇. 正畸用热压膜材料现状与展望[J]. 华西口腔医学杂志, 2018, 36(1): 87-91. |
[13] | 林野. 当代牙种植体设计进步与临床意义[J]. 华西口腔医学杂志, 2017, 35(1): 18-28. |
[14] | 邢维斌 郑淑贤 杨适宜. 下颌平面角影响种植体应力分布的有限元分析[J]. 华西口腔医学杂志, 2016, 34(5): 502-505. |
[15] | 丁弦 夏晨蕾 贺苗 孙文娜 王芳 姜文心 张彩霞 王爽玉 张强 姚如永 袁晓. 钙调神经磷酸酶-T细胞核因子信号通路在应力诱导成肌细胞凋亡中的作用[J]. 华西口腔医学杂志, 2015, 33(5): 456-461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||