West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (6): 706-715.doi: 10.7518/hxkq.2024.2024315
• Special Review • Previous Articles Next Articles
Xu Jieyun(), Zhao Yuan(
), Liu Haozhou, Yin Jingyuan, Chen Zetao(
)
Received:
2024-08-26
Revised:
2024-09-30
Online:
2024-12-01
Published:
2024-11-29
Contact:
Chen Zetao
E-mail:xujy273@mail.sysu.edu.cn;zhaoy585@mail2.sysu.edu.cn;chenzet3@mail.sysu.edu.cn
Supported by:
CLC Number:
Xu Jieyun, Zhao Yuan, Liu Haozhou, Yin Jingyuan, Chen Zetao. Hierarchical evolution of bone biomimicry and osteo-coagulo-immunomodulation induced by the size of biological hydroxyapatite[J]. West China Journal of Stomatology, 2024, 42(6): 706-715.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
Sizes of commercially available BHA particles
品牌名称 | 产地 | 材料来源 | 颗粒尺寸 |
---|---|---|---|
Bio-Oss? | 美国 | 牛骨 | 0.25~1 mm;1~2 mm |
THE Graft? | 中国 | 猪骨 | 0.25~1 mm;1~2 mm |
Gen-Os? | 英国 | 猪骨或马骨 | 0.25~1 mm |
Cerabone? | 瑞士 | 牛骨 | 0.5~1 mm;1~2 mm |
Endobon? | 法国 | 牛骨 | 0.5~1 mm;1~2 mm |
OsteoGraf? | 美国 | 牛骨 | 0.25~0.42 mm;0.42~1 mm |
SYMBIOS? | 美国 | 海藻 | 0.2~1 mm;1~2 mm |
Bio Osteo? | 中国 | 牛骨 | 0.25~1 mm;0.4~1 mm;1~2 mm |
Adbone? | 葡萄牙 | 异种骨 | 0.1~0.5 mm;1~2 mm |
BioBase a-pore? | 德国 | 牛骨 | 0.25~0.5 mm;0.5~1.4 mm;1.4~3.2 mm |
Genoss? | 韩国 | 猪骨 | 0.2~0.5 mm;0.5~1 mm;1~2 mm |
ChronOS? | 美国 | 异种骨 | 0.5~0.7 mm;0.7~1.4 mm;1.4~2.8 mm |
BioResorb? | 德国 | 异种骨 | 0.2~0.5 mm;0.5~1 mm;1~2 mm |
Frios Algipore? | 美国 | 海藻 | 0.3~0.5 mm;0.5~1 mm |
Tab 2
Nine biological hierarchy of biological bone
分级 | 名称 | 结构特征 | 基本结构尺寸 |
---|---|---|---|
一级 | 骨骼基本成分 | 单纯BHA晶体或胶原纤维 | BHA晶体长30~50 nm,宽20~25 nm,厚1.5~4 nm |
二级 | 骨骼基础结构 | BHA晶体和矿化胶原纤维组成 | 胶原纤维尺寸0.1 μm左右 |
三级 | 纤维阵列 | Ⅰ型胶原蛋白组成的三维螺旋结构的纤维阵列 | 阵列结构尺寸处于小于一个微米到数个微米之间 |
四级 | 阵列模式 | 纤维阵列组成阵列模式,分为平行/扇形模式 | 板层骨和平行纤维骨尺寸约为1 μm |
五级 | 超结构 | 分为有序骨中的单向胶原纤维束和无序骨中的骨陷窝-骨小管网络 | 纤维束直径1~3 μm,相邻纤维束相距67 nm |
六级 | 骨组织 | 构成骨骼的组织包括编织骨、平行纤维骨和板层骨 | 骨组织直径10 μm左右,板层间厚度3~7 μm |
七级 | 组织结构基序 | 4种类型,环形板层基序、板层束、骨单位和纤维层状骨 | 哈弗系统由直径100~200 μm的圆柱状结构和30~40 μm的中央管形成 |
八级 | 组织 | 密质骨或松质骨 | 密质骨尺寸约1 mm,松质骨直径0.1~3.5 mm |
九级 | 组织 | 密质骨和松质骨 | 密质骨、松质骨尺寸都为毫米级别 |
Tab 4
Biomimetic hierarchy and osteo-coagulo-immunomodulation potential of common commerciall BHA materials
尺寸 | 层级 | 结构 | 骨凝血免疫调控潜能 |
---|---|---|---|
<0.2 mm | 一级 | 钙磷灰石晶体 | 其晶体、堆积面和离子活性影响凝血系统的活性 |
二级 | 微孔/网孔 | 提供吸附位点,增加凝血启动信号和官能团暴露,促进凝血因子与周围物质进行离子交换 | |
三级 | 单层骨小梁结构 | 增加血小板分散活性、凝血因子吸附面积,材料支架无法提供稳定的空间支持 | |
0.2~1 mm | 四级 | 单层大孔结构 | 提供血凝块基本支架,确保血凝块与材料机械嵌合,促进血管生长及细胞渗透,提升骨再生能力 |
>1 mm | 五级 | 多层多孔结构 | 促进血浆蛋白循环,为成骨细胞黏附、增殖提供环境 |
1 | Zubieta-Otero LF, Londoño-Restrepo SM, Lopez-Cha-vez G, et al. Comparative study of physicochemical pro-perties of bio-hydroxyapatite with commercial samples[J]. Mater Chem Phys, 2021, 259: 124201. |
2 | Lebre F, Sridharan R, Sawkins MJ, et al. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation[J]. Sci Rep, 2017, 7(1): 2922. |
3 | Gao Y, Gao S, Yao Y, et al. Hard tissue stability outside the buccal bone arch contour after guided bone regeneration in the anterior maxilla: a retrospective cohort radiographic study[J]. Clin Oral Implants Res, 2023, 34(12): 1373-1384. |
4 | Reznikov N, Shahar R, Weiner S. Bone hierarchical stru-cture in three dimensions[J]. Acta Biomater, 2014, 10(9): 3815-3826. |
5 | Wu S, Shan Z, Xie L, et al. Mesopore controls the respon-ses of blood clot-immune complex via modulating fibrin network[J]. Adv Sci (Weinh), 2022, 9(3): e2103608. |
6 | Lange T, Schilling AF, Peters F, et al. Proinflammatory and osteoclastogenic effects of beta-tricalciumphosphate and hydroxyapatite particles on human mononuclear cells in vitro [J]. Biomaterials, 2009, 30(29): 5312-5318. |
7 | Shanley LC, Mahon OR, O'Rourke SA, et al. Macrophage metabolic profile is altered by hydroxyapatite particle size[J]. Acta Biomater, 2023, 160: 311-321. |
8 | Su M, Li C, Deng S, et al. Balance between the CMC/ACP nano complex and blood assimilation orchestrates immunomodulation of the biomineralized collagen matrix[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58166-58180. |
9 | Zou Y, Shan Z, Han Z, et al. Regulating blood clot fibrin films to manipulate biomaterial-mediated foreign body responses[J]. Research (Wash D C), 2023, 6: 0225. |
10 | Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior[J]. Acta Biomater, 2013, 9(9): 8037-8045. |
11 | Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells[J]. Nature, 1998, 391(6667): 591-594. |
12 | Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review[J]. Bioact Mater, 2017, 2(4): 224-247. |
13 | Sanz-Sánchez I, Sanz-Martín I, Ortiz-Vigón A, et al. Complications in bone-grafting procedures: classification and management[J]. Periodontol 2000, 2022, 88(1): 86-102. |
14 | Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries[J]. Biomater Res, 2019, 23: 9. |
15 | Tay JRH, Lu XJ, Lai WMC, et al. Clinical and histological sequelae of surgical complications in horizontal gui-ded bone regeneration: a systematic review and proposal for management[J]. Int J Implant Dent, 2020, 6(1): 76. |
16 | Wongin S, Narkbunnam R, Waikakul S, et al. Construction and evaluation of osteochondral-like tissue using chondrocyte sheet and cancellous bone[J]. Tissue Eng Part A, 2021, 27(3/4): 282-295. |
17 | Nagasaki T, Nagata F, Sakurai M, et al. Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior[J]. J Asian Ceram Soc, 2017, 5(2): 88-93. |
18 | Yang Q, Zhang Y, Liu M, et al. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy[J]. Anal Chim Acta, 2007, 597(1): 58-66. |
19 | Arimura S, Kawahara K, Biswas KK, et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation[J]. J Biomed Mater Res B Appl Biomater, 2007, 81(2): 456-461. |
20 | Liu Q, Chen Z, Gu H, et al. Preparation and characterization of fluorinated porcine hydroxyapatite[J]. Dent Mater J, 2012, 31(5): 742-750. |
21 | Qiao W, Liu R, Li Z, et al. Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration[J]. Biomater Sci, 2018, 6(11): 2951-2964. |
22 | Liu R, Qiao W, Huang B, et al. Fluorination enhances the osteogenic capacity of porcine hydroxyapatite[J]. Tis-sue Eng Part A, 2018, 24(15/16): 1207-1217. |
23 | Ferraz N, Carlsson J, Hong J, et al. Influence of nanoporesize on platelet adhesion and activation[J]. J Mater Sci Mater Med, 2008, 19(9): 3115-3121. |
24 | Zhou H, Wang C, Niu H, et al. A novel droplet-fabrica-ted mesoporous silica-based nanohybrid granules for he-morrhage control[J]. J Biomed Nanotechnol, 2018, 14(4): 649-661. |
25 | Han YC, Wang XY, Dai HL, et al. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions[J]. ACS Appl Mater Interfaces, 2012, 4(9): 4616-4622. |
26 | Zhao Y, Sun X, Zhang G, et al. Interaction of mesoporous silica nanoparticles with human red blood cell me-mbranes: size and surface effects[J]. ACS Nano, 2011, 5(2): 1366-1375. |
27 | Rouahi M, Gallet O, Champion E, et al. Influence of hydroxyapatite microstructure on human bone cell response[J]. J Biomed Mater Res A, 2006, 78(2): 222-235. |
28 | Ferraz N, Ott MK, Hong J. Time sequence of blood activation by nanoporous alumina: studies on platelets and complement system[J]. Microsc Res Tech, 2010, 73(12): 1101-1109. |
29 | Macrae FL, Duval C, Papareddy P, et al. A fibrin biofilm covers blood clots and protects from microbial invasion[J]. J Clin Invest, 2018, 128(8): 3356-3368. |
30 | Weisel JW, Litvinov RI. Keeping it clean: clot biofilm to wall out bacterial invasion[J]. J Thromb Haemost, 2018, 16(12): 2359-2361. |
31 | Weisel JW, Litvinov RI. Fibrin formation, structure and properties[M]//Parry DAD, Squire JM. Fibrous proteins: structures and mechanisms. Berlin: Springer, 2017: 405-456. |
32 | Garg K, Pullen NA, Oskeritzian CA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013, 34(18): 4439-4451. |
33 | Ooi CH, Ling YP, Abdullah WZ, et al. Physicochemical evaluation and in vitro hemocompatibility study on nanoporous hydroxyapatite[J]. J Mater Sci Mater Med, 2019, 30(4): 44. |
34 | Wang J, Wang L, Fan Y. Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement[J]. Int J Mol Sci, 2016, 17(6): E798. |
35 | Kandori K, Fudo A, Ishikawa T. Study on the particle texture dependence of protein adsorption by using synthetic micrometer-sized calcium hydroxyapatite particles[J]. Colloids Surf B Biointerfaces, 2002, 24(2): 145-153. |
36 | Kawachi G, Sasaki S, Nakahara K, et al. Porous apatite carrier prepared by hydrothermal method[J]. Key Eng Mater, 2006, 309-311(2): 935-938. |
37 | Aslam Khan MU, Haider A, Abd Razak SI, et al. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing[J]. J Tissue Eng Regen Med, 2021, 15(4): 322-335. |
38 | Santos C, Turiel S, Sousa Gomes P, et al. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior[J]. J Nanobiotechnol, 2018, 16(1): 27. |
39 | Cazalbou S, Combes C, Eichert D, et al. Adaptative physico-chemistry of bio-related calcium phosphates[J]. J Mater Chem, 2004, 14(14): 2148-53. |
40 | Rey C, Combes C. What bridges mineral platelets of bone[J]. Bonekey Rep, 2014, 3: 586. |
41 | Habraken W, Habibovic P, Epple M, et al. Calcium phosphates in biomedical applications: materials for the future[J]. Mater Today, 2016, 19(2): 69-87. |
42 | Beniash E, Metzler RA, Lam RS, et al. Transient amorphous calcium phosphate in forming enamel[J]. J Struct Biol, 2009, 166(2): 133-143. |
43 | Lyu Y, Asoh TA, Uyama H. Facile synthesis of a three-dimensional hydroxyapatite monolith for protein adsorption[J]. J Mater Chem B, 2021, 9(47): 9711-9719. |
44 | Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 922-939. |
45 | Mehmani A, Prodanovic M. The effect of microporosity on transport properties in porous media[J]. Adv Water Resour, 2014, 63: 104-119. |
46 | Pérez RA, Won JE, Knowles JC, et al. Naturally and synthetic smart composite biomaterials for tissue regeneration[J]. Adv Drug Deliv Rev, 2013, 65(4): 471-496. |
47 | Oh DS, Kim YJ, Hong MH, et al. Effect of capillary action on bone regeneration in micro-channeled ceramic scaffolds[J]. Ceram Int, 2014, 40(7): 9583-9589. |
48 | Li X, van Blitterswijk CA, Feng Q, et al. The effect of calcium phosphate microstructure on bone-related cells in vitro [J]. Biomaterials, 2008, 29(23): 3306-3316. |
49 | Wang Y, Zhang X, Shao J, et al. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis th-rough the Wnt/β-catenin pathway[J]. Sci Rep, 2017, 7(1): 3652. |
50 | Cicuéndez M, Malmsten M, Doadrio JC, et al. Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro[J]. J Mater Chem B, 2014, 2(1): 49-58. |
51 | Ain QU, Zeeshan M, Mazhar D, et al. QbD-based fabrication of biomimetic hydroxyapatite embedded gelatin nanoparticles for localized drug delivery against deteriorated arthritic joint architecture[J]. Macromol Biosci, 2024, 24(2): e2300336. |
52 | Ravichandran R, Gandhi S, Sundaramurthi D, et al. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration[J]. J Biomater Sci Polym Ed, 2013, 24(17): 1988-2005. |
53 | Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses[J]. J Biomed Mater Res, 1970, 4(3): 433-456. |
54 | Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 1246-1262. |
55 | O'brien FJ. Biomaterials & scaffolds for tissue enginee-ring[J]. Mater Today, 2011, 14(3): 88-95. |
[1] | Yuan Lihong, Chen Chen, Ma Yudi, Liang Ruizhen. Osteogenic effect of poly(lactic-co-glycolic acid) microcapsules with different molecular weights encapsulating bone morphogenetic protein 2 [J]. West China Journal of Stomatology, 2024, 42(5): 572-580. |
[2] | Chen Liangwei, Han Jianmin, Guo Chuanbin. Research status and prospects of biodegradable magnesium-based metal-guided bone regeneration membranes [J]. West China Journal of Stomatology, 2024, 42(4): 415-425. |
[3] | Sun Yanping, Liao Li. Effects of surface nanomorphology on the senescence of periodontal ligament stem cells [J]. West China Journal of Stomatology, 2024, 42(2): 172-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||