West China Journal of Stomatology ›› 2022, Vol. 40 ›› Issue (3): 279-284.doi: 10.7518/hxkq.2022.03.005
Previous Articles Next Articles
Yang Mengxi(), Wang Yiru, Yin Bin, Zheng Qian, Shi Bing, Jia Zhonglin.(
)
Received:
2021-12-07
Revised:
2022-03-20
Online:
2022-06-01
Published:
2022-06-01
Contact:
Jia Zhonglin.
E-mail:1454089273@qq.com;zhonglinjia@sina.com
Supported by:
CLC Number:
Yang Mengxi, Wang Yiru, Yin Bin, Zheng Qian, Shi Bing, Jia Zhonglin.. Association of soluble epoxide hydrolase 2 gene with the risk of non-syndromic cleft lip with or without cleft palate in western Han Chinese population[J]. West China Journal of Stomatology, 2022, 40(3): 279-284.
Tab 2
Association analysis between common variations in the EPHX2 gene region and NSCL/P
SNP | 位置 | 功能区间 | Ref | Alt | 等位基因频率 | 病例组 | 对照组 | P值 | OR(95%CI) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(hg37) | Ref | Alt | Ref | Alt | |||||||
rs57699806 | 27362587 | 外显子 | G | A | 8.50% | 291 | 27 | 1044 | 34 | 0.000 13 | 2.849(1.691~4.800) |
rs4732723 | 27407063 | 基因间 | T | C | 21.40% | 250 | 68 | 764 | 314 | 0.006 50 | 0.662(0.491~0.892) |
rs7829267 | 27392986 | 内含子 | C | T | 26.10% | 235 | 83 | 877 | 207 | 0.009 20 | 1.496(1.117~2.005) |
rs721619 | 27381996 | 内含子 | C | G | 25.50% | 237 | 81 | 880 | 204 | 0.011 00 | 1.474(1.098~1.980) |
rs7816586 | 27369334 | 内含子 | A | G | 61.00% | 124 | 194 | 494 | 590 | 0.040 00 | 1.310(1.015~1.691) |
1 | Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17): 13981-13990. |
2 | Saleem K, Zaib T, Sun W, et al. Assessment of candidate genes and genetic heterogeneity in human non syndro-mic orofacial clefts specifically non syndromic cleft lip with or without palate[J]. Heliyon, 2019, 5(12): e03019. |
3 | Candotto V, Oberti L, Gabrione F, et al. Current concepts on cleft lip and palate etiology[J]. J Biol Regul Homeost Agents, 2019, 33(3 ): 145-151. |
4 | Marazita ML, Murray JC, Lidral AC, et al. Meta-analysis of 13 genome scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35[J]. Am J Hum Genet, 2004, 75(2): 161-173. |
5 | Riley BM, Schultz RE, Cooper ME, et al. A genome-wide linkage scan for cleft lip and cleft palate identifies a novel locus on 8p11-23[J]. Am J Med Genet A, 2007, 143A(8): 846-852. |
6 | Ludwig KU, Ahmed ST, Böhmer AC, et al. Meta-analysis reveals genome-wide significance at 15q13 for nonsyndromic clefting of both the lip and the palate, and functional analyses implicate GREM1 as a plausible causative gene[J]. PLoS Genet, 2016, 12(3): e1005914. |
7 | Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009, 41(4): 473-477. |
8 | Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009, 155(6): 909-913. |
9 | Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010, 42(1): 24-26. |
10 | Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4 [J]. Nat Genet, 2010, 42(6): 525-529. |
11 | Beaty TH, Taub MA, Scott AF, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study[J]. Hum Genet, 2013, 132(7): 771-81. |
12 | Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015, 6: 6414. |
13 | Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016, 25(13): 2862-2872. |
14 | Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun. 2017, 8: 14364. |
15 | Ludwig KU, Mangold E, Herms S, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012, 44(9): 968-971. |
16 | Gowans LJ, Adeyemo WL, Eshete M, et al. Association studies and direct DNA sequencing implicate genetic susceptibility loci in the etiology of nonsyndromic orofacial clefts in sub-Saharan African populations[J]. J Dent Res, 2016, 95(11): 1245-1256. |
17 | Raychaudhuri S. Mapping rare and common causal alleles for complex human diseases[J]. Cell, 2011, 147(1): 57-69. |
18 | Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing heritability: genetic interactions create phantom heritability[J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1193-1198. |
19 | Gibson G. Rare and common variants: twenty arguments[J]. Nat Rev Genet, 2012, 13(2): 135-145. |
20 | Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing[J]. Nat Rev Genet, 2010, 11(6): 415-425. |
21 | Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies[J]. Curr Protoc Mol Biol, 2018, 122(1): e59. |
22 | Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism[J]. Prog Lipid Res, 2005, 44(1): 1-51. |
23 | Gautheron J, Jéru I. The multifaceted role of epoxide hydrolases in human health and disease[J]. Int J Mol Sci, 2020, 22(1): 13. |
24 | Murillo-Rincón AP, Kaucka M. Insights into the complexity of craniofacial development from a cellular perspective[J]. Front Cell Dev Biol, 2020, 8: 620735. |
25 | Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease[J]. Development, 2018, 145(20): dev164384. |
26 | Guo S, Zhang Y, Zhou T, et al. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1[J]. Cell Death Differ, 2018, 25(11): 1996-2009. |
27 | Weng M, Chen Z, Xiao Q, et al. A review of FGF signa-ling in palate development[J]. Biomed Pharmacother, 2018, 103: 240-247. |
28 | Lan SJ, Yang XG, Chen Z, et al. Role of GATA-6 and bone morphogenetic protein-2 in dexamethasone-indu-ced cleft palate formation in institute of cancer research mice[J]. J Craniofac Surg, 2016, 27(6): 1600-1605. |
29 | Grandori C, Cowley SM, James LP, et al. The Myc/Max/Mad network and the transcriptional control of cell behavior[J]. Annu Rev Cell Dev Biol, 2000, 16: 653-699. |
30 | Hurlin PJ, Huang J. The MAX-interacting transcription factor network[J]. Semin Cancer Biol, 2006, 16(4): 265-274. |
31 | Schreiber-Agus N, Meng Y, Hoang T, et al. Role of M-xi1 in ageing organ systems and the regulation of normal and neoplastic growth[J]. Nature, 1998, 393(6684): 483-487. |
32 | Toyo-oka K, Hirotsune S, Gambello MJ, et al. Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome[J]. Hum Mol Genet, 2004, 13(10): 1057-1067. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 377
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||