1 |
Fan D, Wu S, Liu L, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17): 13981-13990.
|
2 |
Saleem K, Zaib T, Sun W, et al. Assessment of candidate genes and genetic heterogeneity in human non syndro-mic orofacial clefts specifically non syndromic cleft lip with or without palate[J]. Heliyon, 2019, 5(12): e03019.
|
3 |
Candotto V, Oberti L, Gabrione F, et al. Current concepts on cleft lip and palate etiology[J]. J Biol Regul Homeost Agents, 2019, 33(3 ): 145-151.
|
4 |
Marazita ML, Murray JC, Lidral AC, et al. Meta-analysis of 13 genome scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35[J]. Am J Hum Genet, 2004, 75(2): 161-173.
|
5 |
Riley BM, Schultz RE, Cooper ME, et al. A genome-wide linkage scan for cleft lip and cleft palate identifies a novel locus on 8p11-23[J]. Am J Med Genet A, 2007, 143A(8): 846-852.
|
6 |
Ludwig KU, Ahmed ST, Böhmer AC, et al. Meta-analysis reveals genome-wide significance at 15q13 for nonsyndromic clefting of both the lip and the palate, and functional analyses implicate GREM1 as a plausible causative gene[J]. PLoS Genet, 2016, 12(3): e1005914.
|
7 |
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009, 41(4): 473-477.
|
8 |
Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009, 155(6): 909-913.
|
9 |
Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010, 42(1): 24-26.
|
10 |
Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4 [J]. Nat Genet, 2010, 42(6): 525-529.
|
11 |
Beaty TH, Taub MA, Scott AF, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study[J]. Hum Genet, 2013, 132(7): 771-81.
|
12 |
Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015, 6: 6414.
|
13 |
Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016, 25(13): 2862-2872.
|
14 |
Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun. 2017, 8: 14364.
|
15 |
Ludwig KU, Mangold E, Herms S, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012, 44(9): 968-971.
|
16 |
Gowans LJ, Adeyemo WL, Eshete M, et al. Association studies and direct DNA sequencing implicate genetic susceptibility loci in the etiology of nonsyndromic orofacial clefts in sub-Saharan African populations[J]. J Dent Res, 2016, 95(11): 1245-1256.
|
17 |
Raychaudhuri S. Mapping rare and common causal alleles for complex human diseases[J]. Cell, 2011, 147(1): 57-69.
|
18 |
Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing heritability: genetic interactions create phantom heritability[J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1193-1198.
|
19 |
Gibson G. Rare and common variants: twenty arguments[J]. Nat Rev Genet, 2012, 13(2): 135-145.
|
20 |
Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing[J]. Nat Rev Genet, 2010, 11(6): 415-425.
|
21 |
Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies[J]. Curr Protoc Mol Biol, 2018, 122(1): e59.
|
22 |
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism[J]. Prog Lipid Res, 2005, 44(1): 1-51.
|
23 |
Gautheron J, Jéru I. The multifaceted role of epoxide hydrolases in human health and disease[J]. Int J Mol Sci, 2020, 22(1): 13.
|
24 |
Murillo-Rincón AP, Kaucka M. Insights into the complexity of craniofacial development from a cellular perspective[J]. Front Cell Dev Biol, 2020, 8: 620735.
|
25 |
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease[J]. Development, 2018, 145(20): dev164384.
|
26 |
Guo S, Zhang Y, Zhou T, et al. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1[J]. Cell Death Differ, 2018, 25(11): 1996-2009.
|
27 |
Weng M, Chen Z, Xiao Q, et al. A review of FGF signa-ling in palate development[J]. Biomed Pharmacother, 2018, 103: 240-247.
|
28 |
Lan SJ, Yang XG, Chen Z, et al. Role of GATA-6 and bone morphogenetic protein-2 in dexamethasone-indu-ced cleft palate formation in institute of cancer research mice[J]. J Craniofac Surg, 2016, 27(6): 1600-1605.
|
29 |
Grandori C, Cowley SM, James LP, et al. The Myc/Max/Mad network and the transcriptional control of cell behavior[J]. Annu Rev Cell Dev Biol, 2000, 16: 653-699.
|
30 |
Hurlin PJ, Huang J. The MAX-interacting transcription factor network[J]. Semin Cancer Biol, 2006, 16(4): 265-274.
|
31 |
Schreiber-Agus N, Meng Y, Hoang T, et al. Role of M-xi1 in ageing organ systems and the regulation of normal and neoplastic growth[J]. Nature, 1998, 393(6684): 483-487.
|
32 |
Toyo-oka K, Hirotsune S, Gambello MJ, et al. Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome[J]. Hum Mol Genet, 2004, 13(10): 1057-1067.
|