West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (2): 181-191.doi: 10.7518/hxkq.2024.2023285
• Basic Research • Previous Articles Next Articles
Sun Jinmeng1(), Zhang Ying1, Zheng Zejun1, Ding Xiaoling2, Sun Minmin1(
), Ding Gang1(
)
Received:
2023-08-31
Revised:
2024-01-17
Online:
2024-04-01
Published:
2024-03-26
Contact:
Sun Minmin,Ding Gang
E-mail:sunjinmeng07@163.com;sunminmin@wfmc.edu.cn;dinggang@wfmc.edu.cn
Supported by:
CLC Number:
Sun Jinmeng, Zhang Ying, Zheng Zejun, Ding Xiaoling, Sun Minmin, Ding Gang. Potential mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking[J]. West China Journal of Stomatology, 2024, 42(2): 181-191.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
Information of active ingredients of ginseng
分子身份标识号码 | 活性成分 | OB/% | DL/% |
---|---|---|---|
MOL002879 | Diop | 43.59 | 0.39 |
MOL000449 | Stigmasterol | 43.83 | 0.76 |
MOL000358 | beta-sitosterol | 36.91 | 0.75 |
MOL003648 | Inermin | 65.83 | 0.54 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL004492 | Chrysanthemaxanthin | 38.72 | 0.58 |
MOL005308 | Aposiopolamine | 66.65 | 0.22 |
MOL005314 | Celabenzine | 101.88 | 0.49 |
MOL005317 | Deoxyharringtonine | 39.27 | 0.81 |
MOL005318 | Dianthramine | 40.45 | 0.2 |
MOL005320 | arachidonate | 45.57 | 0.2 |
MOL005321 | Frutinone A | 65.9 | 0.34 |
MOL005344 | ginsenoside rh2 | 36.32 | 0.56 |
MOL005348 | Ginsenoside-Rh4_qt | 31.11 | 0.78 |
MOL005356 | Girinimbin | 61.22 | 0.31 |
MOL005357 | Gomisin B | 31.99 | 0.83 |
MOL005360 | malkangunin | 57.71 | 0.63 |
MOL005376 | Panaxadiol | 33.09 | 0.79 |
MOL005384 | suchilactone | 57.52 | 0.56 |
MOL005399 | alexandrin_qt | 36.91 | 0.75 |
MOL005401 | ginsenoside Rg5_qt | 39.56 | 0.79 |
MOL000787 | Fumarine | 59.26 | 0.83 |
1 | 孟焕新. 牙周病学[M]. 5版. 北京: 人民卫生出版社, 2020: 146-147. |
Meng HX. Periodontology[M]. 5th ed. Beijing: People’s Medical Publishing House, 2020: 146-147. | |
2 | Global oral health status report: towards universal heal-th coverage for oral health by 2030[R]. Geneva: World Health Organization, 2022: 37-40. |
3 | Figuero E, Han YW, Furuichi Y. Periodontal diseases and adverse pregnancy outcomes: mechanisms[J]. Periodontol 2000, 2020, 83(1): 175-188. |
4 | Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases[J]. Nat Rev Endocrinol, 2011, 7(12): 738-748. |
5 | Sanz M, Del Castillo AM, Jepsen S, et al. Periodontitis and cardiovascular diseases: consensus report[J]. J Clin Periodontol, 2020, 47(3): 268-288. |
6 | Michaud DS, Liu Y, Meyer M, et al. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study[J]. Lancet Oncol, 2008, 9(6): 550-558. |
7 | Schmidlin PR, Fachinger P, Tini G, et al. Shared microbiome in gums and the lung in an outpatient population[J]. J Infect, 2015, 70(3): 255-263. |
8 | Jungbauer G, Stähli A, Zhu X, et al. Periodontal microorganisms and Alzheimer disease—A causative relationship[J]. Periodontol 2000, 2022, 89(1): 59-82. |
9 | Tsai CY, Tang CY, Tan TS, et al. Subgingival microbiota in individuals with severe chronic periodontitis[J]. J Microbiol Immunol Infect, 2018, 51(2): 226-234. |
10 | Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. |
11 | Graziani F, Karapetsa D, Alonso B, et al. Nonsurgical and surgical treatment of periodontitis: how many options for one disease[J]. Periodontol 2000, 2017, 75(1): 152-188. |
12 | Bhatavadekar NB, Williams RC. Modulation of the host inflammatory response in periodontal disease management: exciting new directions[J]. Int Dent J, 2009, 59(5): 305-308. |
13 | Shergis JL, Zhang AL, Zhou W, et al. Panax ginseng in randomised controlled trials: a systematic review[J]. Phy-tother Res, 2013, 27(7): 949-965. |
14 | Fan W, Huang Y, Zheng H, et al. Ginsenosides for the treatment of metabolic syndrome and cardiovascular di-seases: pharmacology and mechanisms[J]. Biomed Pharmacother, 2020, 132: 110915. |
15 | Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides[J]. Med Res Rev, 2018, 38(2): 625-654. |
16 | Li X, Liu J, Zuo TT, et al. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis[J]. Nat P-rod Rep, 2022, 39(4): 875-909. |
17 | Oh SJ, Oh Y, Ryu IW, et al. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes[J]. Biosci Biotechnol Biochem, 2016, 80(1): 95-103. |
18 | Xing JJ, Hou JG, Ma ZN, et al. Ginsenoside Rb3 provi-des protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated auto-phagy and inhibition of apoptosis in vitro and in vivo [J]. Cell Prolif, 2019, 52(4): e12627. |
19 | Liu X, Jiang Y, Fu W, et al. Combination of the ginseno-sides Rb3 and Rb2 exerts protective effects against myocardial ischemia reperfusion injury in rats[J]. Int J Mol Med, 2020, 45(2): 519-531. |
20 | Sun M, Ji Y, Zhou S, et al. Ginsenoside Rb3 inhibits osteoclastogenesis via ERK/NF‑κB signaling pathway in vitro and in vivo [J]. Oral Dis, 2023, 29(8): 3460-3471. |
21 | Sun M, Ji Y, Li Z, et al. Ginsenoside Rb3 inhibits pro-inflammatory cytokines via MAPK/AKT/NF-κB pathways and attenuates rat alveolar bone resorption in response to Porphyromonas gingivalis LPS[J]. Molecules, 2020, 25(20): 4815. |
22 | 赵欢, 开国银, 韩冰. 基于网络药理学和分子对接的丹参饮抗结肠癌作用机制[J]. 中国药理学通报, 2022, 38(4): 598-605. |
Zhao H, Kai GY, Han B. Study of Danshen decoction on colon cancer based on network pharmacology and molecular docking[J]. Chin Pharmacol Bull, 2022, 38(4): 598-605. | |
23 | 宗阳, 丁美林, 贾可可, 等. 基于网络药理学和分子对接法探寻达原饮治疗新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药, 2020, 51(4): 836-844. |
Zong Y, Ding ML, Jia KK, et al. Exploring active compounds of Da-Yuan-Yin in treatment of COVID-19 based on network pharmacology and molecular docking method[J]. Chin Tradit Herbal Drugs, 2020, 51(4): 836-844. | |
24 | 唐萍, 唐芳婷, 王红, 等. 基于网络药理学及分子对接探讨人参治疗胃癌的作用机制[J]. 湖南中医杂志, 2023, 39(6): 162-169. |
Tang P, Tang FT, Wang H, et al. Mechanism of action of Panax ginseng in treatment of gastric cancer: a study based on network pharmacology and molecular docking[J]. Hunan J Tradit Chin Med, 2023, 39(6): 162-169. | |
25 | Chen W, Yao P, Vong CT, et al. Ginseng: a bibliometric analysis of 40-year journey of global clinical trials[J]. J Adv Res, 2020, 34: 187-197. |
26 | 刘丽, 李雅萍, 王娟, 等. 三七凝胶治疗牙周炎的初步研究[J]. 宁夏医学杂志, 2022, 44(12): 1074-1077. |
Liu L, Li YP, Wang J, et al. Preliminary study on the curative effect of panax notoginseng gel on periodontitis[J]. Ningxia Med J, 2022, 44(12): 1074-1077. | |
27 | 杨倩, 余占海, 杜建东, 等. 人参皂甙Rg-1对大鼠牙周组织中白介素6、骨钙素水平的影响[J]. 实用口腔医学杂志, 2009, 25(1): 22-25. |
Yang Q, Yu ZH, Du JD, et al. Effects of ginsenoside Rg-1 on the expressions of interleukin-6, bone gla protein in periodontal tissues in periodontitis rats[J]. J Pract Stomatol, 2009, 25(1): 22-25. | |
28 | Kim EN, Kim TY, Park EK, et al. Panax ginseng fruit has anti-inflammatory effect and induces ssteogenic differentiation by regulating Nrf2/HO-1 signaling pathway in vitro and in vivo models of periodontitis[J]. Antioxidants (Basel), 2020, 9(12): 1221. |
29 | Gölz L, Memmert S, Rath-Deschner B, et al. Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases[J]. Mediators Inflamm, 2015, 2015: 438085. |
30 | Ng KT, Li JP, Ng KM, et al. Expression of hypoxia-inducible factor-1α in human periodontal tissue[J]. J Perio-dontol, 2011, 82(1): 136-141. |
31 | 唐宋, 张晓南. 牙周组织低氧环境与牙周炎发生发展的研究进展[J]. 同济大学学报(医学版), 2021, 42(2): 285-290. |
Tang S, Zhang XN. Relationship between hypoxic environment in periodontal tissue and the development of pe-riodontitis[J]. J Tongji Univ (Med Sci), 2021, 42(2): 285-290. | |
32 | Hirai K, Furusho H, Hirota K, et al. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss[J]. Int J Oral Sci, 2018, 10(2): 12. |
33 | 施庆颜, 靳华, 蓝田, 等. 缺氧诱导因子1α在人慢性牙周炎牙龈组织中的表达[J]. 中国病理生理杂志, 2013, 29(9): 1668-1671. |
Shi QY, Jin H, Lan T, et al. Expression of hypoxia-inducible factor 1α in human gingival tissues with chronic periodontitis[J]. Chin J Pathophysiol, 2013, 29(9): 1668-1671. | |
34 | Wang C, Liu C, Liang C, et al. Role of berberine thermosensitive hydrogel in periodontitis via PI3K/AKT pathway in vitro [J]. Int J Mol Sci, 2023, 24(7): 6364. |
35 | Tian T, Chen L, Wang Z, et al. Sema3A drives alternative macrophage activation in the resolution of periodontitis via PI3K/AKT/mTOR signaling[J]. Inflammation, 2023, 46(3): 876-891. |
36 | Han Y, Wang X, Ma D, et al. Ipriflavone promotes proliferation and osteogenic differentiation of periodontal ligament cells by activating GPR30/PI3K/AKT signaling pa-thway[J]. Drug Des Devel Ther, 2018, 12: 137-148. |
37 | 万美钰, 窦德强. 基于网络药理学探究人参、红参与黑参治疗气虚的药效物质基础与机制[J]. 人参研究, 2023, 35(3): 2-8. |
Wan MY, Dou DQ. Exploring the pharmacological substance basis and mechanism of ginseng, red ginseng, and black ginseng in treating qi deficiency based on network pharmacology[J]. Ginseng Res, 2023, 35(3): 2-8. | |
38 | Sczepanik FSC, Grossi ML, Casati M, et al. Periodon-titis is an inflammatory disease of oxidative stress: we should treat it that way[J]. Periodontol 2000, 2020, 84(1): 45-68. |
39 | Bullon P, Newman HN, Obesity Battino M., me-llitus diabetes, atherosclerosis and chronic periodontitis : a shared pathology via oxidative stress and mitochondrial dysfunction[J]. Periodontol 2000, 2014, 64(1): 139-153. |
40 | Han X, Zhao S, Song H, et al. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson’s disease[J]. Redox Biol, 2021, 41: 101911. |
41 | Yang L, Gao Y, Bajpai VK, et al. Advance toward isolation, extraction, metabolism and health benefits of kaem-pferol, a major dietary flavonoid with future perspectives[J]. Crit Rev Food Sci Nutr, 2023, 63(16): 2773-2789. |
42 | Chen M, Xiao J, El-Seedi HR, et al. Kaempferol and atherosclerosis: from mechanism to medicine[J]. Crit Rev Food Sci Nutr, 2022. doi: 10.1080/10408398.2022.21212-61 . |
43 | Fossier L, Panel M, Butruille L, et al. Enhanced mitochondrial calcium uptake suppresses atrial fibrillation associated with metabolic syndrome[J]. J Am Coll Cardiol, 2022, 80(23): 2205-2219. |
44 | Xie C, Zhuang XX, Niu Z, et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers i-dentified via machine learning and a cross-species workflow[J]. Nat Biomed Eng, 2022, 6(1): 76-93. |
45 | Zhao J, Ling L, Zhu W, et al. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis[J]. J Control Release, 2023, 353: 1068-1083. |
46 | Wang S, Shi X, Li J, et al. A small molecule selected from a DNA-encoded library of natural products that binds to TNF‑α and attenuates inflammation in vivo [J]. Adv Sci (Weinh), 2022, 9(21): 2201258. |
47 | Behl T, Mehta K, Sehgal A, et al. Exploring the role of polyphenols in rheumatoid arthritis[J]. Crit Rev Food Sci Nutr, 2022, 62(19): 5372-5393. |
48 | Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease[J]. Autophagy, 2019, 15(11): 1860-1881. |
49 | Yang EJ, Kim GS, Jun M, et al. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells[J]. Food Funct, 2014, 5(7): 1395-1402. |
50 | Liu Z, Yao X, Sun B, et al. Pretreatment with kaempfe-rol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury[J]. Free Radic Biol Med, 2021, 168: 142-154. |
51 | Xiao X, Hu Q, Deng X, et al. Old wine in new bottles: kaempferol is a promising agent for treating the trilogy of liver diseases[J]. Pharmacol Res, 2022, 175: 106005. |
52 | Kim MJ, Song YR, Kim YE, et al. Kaempferol stimulation of autophagy regulates the ferroptosis under the oxidative stress as mediated with AMP-activated protein kinase[J]. Free Radic Biol Med, 2023, 208: 630-642. |
53 | Wang H, Wang Z, Zhang Z, et al. β-Sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: mechanisms of action and future prospects[J]. Adv Nutr, 2023, 14(5): 1085-1110. |
54 | Khan Z, Nath N, Rauf A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications[J]. Chem Biol Inte-ract, 2022, 365: 110117. |
55 | Zhang F, Liu Z, He X, et al. β-sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: involvement of NF-кB and HO-1/Nrf-2 pathway[J]. Drug Deliv, 2020, 27(1): 1329-1341. |
56 | Babu S, Jayaraman S. An update on β-sitosterol: a potential herbal nutraceutical for diabetic management[J]. Bio-med Pharmacother, 2020, 131: 110702. |
57 | Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy[J]. Nat Rev Drug Discov, 2016, 15(6): 385-403. |
58 | Han Y, You X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts[J]. Bone Res, 2018, 6: 16. |
59 | Ferrara N. Vascular endothelial growth factor: basic science and clinical progress[J]. Endocr Rev, 2004, 25(4): 581-611. |
60 | Huang Q, Li F, Liu X, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy[J]. Nat Med, 2011, 17(7): 860-866. |
61 | Nozaki K, Maltez VI, Rayamajhi M, et al. Caspase-7 activates ASM to repair gasdermin and perforin pores[J]. Nature, 2022, 606(7916): 960-967. |
[1] | Li Yue, Xu Chunmei, Xie Xudong, Shi Peilei, Wang Jun, Ding Yi. Temporal and spatial expression analysis of periostin in mice periodontitis model [J]. West China Journal of Stomatology, 2024, 42(3): 286-295. |
[2] | Xin Yu, Fu Ruobing, Xin Xirui, Shang Yaqi, Liu Xinchan, Yu Weixian. Role of connexin 43 in a rat model of periodontitis-induced renal injury [J]. West China Journal of Stomatology, 2024, 42(3): 296-303. |
[3] | Chen Hong, Zhang Ronghua, Zhao Yuan. Non-surgical treatment of maxillary lateral incisor double dens invaginatus type Ⅲ with apical periodontitis [J]. West China Journal of Stomatology, 2024, 42(3): 409-414. |
[4] | Ma Haonan, Li Qiong, Shang Yaqi, Xin Xirui, Liu Xinchan, Wu Zhou, Yu Weixian. Impact of circadian clock protein Bmal1 on experimentally-induced periodontitis-associated renal injury [J]. West China Journal of Stomatology, 2024, 42(2): 163-171. |
[5] | Ye Changchang, Yang He, Huang Ping. Application of intentional replantation in advanced periodontitis involving teeth preservation [J]. West China Journal of Stomatology, 2024, 42(1): 12-18. |
[6] | Wang Jun.. Vital pulp therapy of permanent teeth with irreversible pulpitis [J]. West China Journal of Stomatology, 2023, 41(6): 622-627. |
[7] | Wang Qintao, Ma Zhiwei, Wang Jinjin.. Personal understanding of the extraction or rescue on severe periodontitis teeth [J]. West China Journal of Stomatology, 2023, 41(6): 635-640. |
[8] | Zhang Yanbiao, Wei Meirong, Xia Tianyong, Yin Wenting, Mao Shumei. Association between serum Galectin-3 and periodontitis in patients with type 2 diabetes mellitus [J]. West China Journal of Stomatology, 2023, 41(6): 653-661. |
[9] | Cai Hongxuan, Wang Zheng’an, Zhang Zan, Dai Jingyi, Si Weixing, Fu Qiya, Yang Jingwen, Tian Yaguang. Morinda officinalis polysaccharides inhibit the expression and activity of NOD-like receptor thermal protein domain associated protein 3 in inflammatory periodontal ligament cells by upregulating silent information regulator sirtuin 1 [J]. West China Journal of Stomatology, 2023, 41(6): 662-670. |
[10] | Jiang Jianhong, Shi Xinglian, He Quanmin, Gao Li, Yang Kun, Wang Taiping, Li Zhezhen, Liu Mei. Correlation between health literacy and life quality in elderly patients with chronic periodontitis [J]. West China Journal of Stomatology, 2023, 41(6): 694-700. |
[11] | Lin Li, Li Zhaorong, Jin Yining, Yin Shou-cheng.. Treatment strategies for periodontitis patients with systemic disease [J]. West China Journal of Stomatology, 2023, 41(5): 502-511. |
[12] | Zhang Chen, Hou Zhenzhen, Zong Yingrui.. Exploratory research on the probable shared molecular mechanism and transcription factors between chronic periodontitis and chronic obstructive pulmonary disease [J]. West China Journal of Stomatology, 2023, 41(5): 533-540. |
[13] | Yang Jingmei, Zhou Ziliang, Wu Yafei, Nie Min. Study on the mechanism of curcumin in the treatment of periodontitis through network pharmacology and mole-cular docking [J]. West China Journal of Stomatology, 2023, 41(2): 157-164. |
[14] | You Ziying, Wu Yanlin, Sun Yimin, Wang Zhenming, Ye Ling.. Application of gelatin methacryloyl/minocycline-chitosan-nanoparticles composite hydrogel for the treatment of periodontitis [J]. West China Journal of Stomatology, 2023, 41(1): 11-20. |
[15] | Cao Niuben, Liu Xiaomeng, Deng Yu, Liu Xinchan, Xin Yu, Yu Weixian. Reactive oxygen species/c-Jun N-terminal kinase/nuclear factor kappa-B signaling molecules are involved in pe-riodontitis-induced liver injury by regulating apoptosis [J]. West China Journal of Stomatology, 2022, 40(5): 532-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||