1 |
Shahoumi LA, Saleh MHA, Meghil MM. Virulence factors of the periodontal pathogens: tools to evade the host immune response and promote carcinogenesis[J]. Microorganisms, 2023, 11(1): 115.
|
2 |
Blanco-Pintos T, Regueira-Iglesias A, Balsa-Castro C, et al. Update on the role of cytokines as oral biomarkers in the diagnosis of periodontitis[J]. Adv Exp Med Biol, 2022, 1373: 283-302.
|
3 |
Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechani-sms and therapeutic potential[J]. Clin Epigenetics, 2020, 12(1): 186.
|
4 |
Martins MD, Jiao Y, Larsson L, et al. Epigenetic modifications of histones in periodontal disease[J]. J Dent Res, 2016, 95(2): 215-222.
|
5 |
Sun J, Dong Z, Zhang Y, et al. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering[J]. Sci Rep, 2022, 12(1): 9040.
|
6 |
Zhang L, Lu Q, Chang C. Epigenetics in health and di-sease[J]. Adv Exp Med Biol, 2020, 1253: 3-55.
|
7 |
Hutt DM, Roth DM, Marchal C, et al. Using histone deacetylase inhibitors to analyze the relevance of HDA-Cs for translation[J]. Methods Mol Biol, 2017, 1510: 77-91.
|
8 |
Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 402.
|
9 |
Pan Z, Dong H, Huang N, et al. Oxidative stress and inflammation regulation of sirtuins: new insights into common oral diseases[J]. Front Physiol, 2022, 13: 953078.
|
10 |
Caribé PMV, Villar CC, Romito GA, et al. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin[J]. J Periodontol, 2020, 91(7): 900-905.
|
11 |
Caribé PMV, Villar CC, Romito GA, et al. Prospective, case-controlled study evaluating serum concentration of sirtuin-1 and mannose-binding lectin in patients with and without periodontal and coronary artery disease[J]. Ther Adv Chronic Dis, 2020, 11: 2040622320919621.
|
12 |
Kriaučiūnas A, Liutkevičienė R, Gedvilaitė G, et al. Value of serum sirtuin-1 (SIRT1) levels and SIRT1 gene variants in periodontitis patients[J]. Medicina (Kaunas), 2022, 58(5): 653.
|
13 |
张丽虹. 巴戟天多糖对实验性精索静脉曲张大鼠生殖系统修复作用及miR-181d-5p通过PTEN调控TM4细胞间紧密连接[D]. 福州: 福建医科大学, 2017.
|
|
Zhang LH. Effects of morinda officinalis polysaccharide on experimental varicocele rats and MicroRNA-181d-5p regulate the TJ dynamics via PTEN in TM4 cell line[D]. Fuzhou: Fujian Medical University, 2017.
|
14 |
冯书娈, 张小河, 陈冬青, 等. 巴戟天多糖调控线粒体自噬通路减轻小鼠骨骼肌萎缩的机制研究[J]. 中医药导报, 2022, 28(11): 36-40.
|
|
Feng SL, Zhang XH, Chen DQ, et al. Study on mechanism of morinda officinalis polysaccharide regulating mitophagy pathway to reduce skeletal muscle atrophy in mice[J]. Guiding J Tradit Chin Med Pharmacol, 2022, 28(11): 36-40.
|
15 |
Xu XW, Liu X, Shi C, et al. Roles of immune cells and mechanisms of immune responses in periodontitis[J]. Chin J Dent Res, 2021, 24(4): 219-230.
|
16 |
Pan W, Wang Q, Chen Q. The cytokine network invol-ved in the host immune response to periodontitis[J]. Int J Oral Sci, 2019, 11(3): 30.
|
17 |
Mitra DK, Chavan RR, Prithyani SS, et al. Comparative evaluation of the levels of nod-like receptor family pyrin domain-containing protein (NLRP) 3 in saliva of subjects with chronic periodontitis and healthy controls[J]. J Indian Soc Periodontol, 2022, 26(3): 230-235.
|
18 |
Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, et al. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease[J]. Inflamm Res, 2017, 66(1): 59-65.
|
19 |
Lian D, Dai L, Xie Z, et al. Periodontal ligament fibroblasts migration injury via ROS/TXNIP/Nlrp3 inflammasome pathway with Porphyromonas gingivalis lipopolysaccharide[J]. Mol Immunol, 2018, 103: 209-219.
|
20 |
de Alencar JB, Zacarias JMV, Tsuneto PY, et al. Influence of inflammasome NLRP3, and IL1B and IL2 gene polymorphisms in periodontitis susceptibility[J]. PLoS One, 2020, 15(1): e0227905.
|
21 |
Larsson L. Current concepts of epigenetics and its role in periodontitis[J]. Curr Oral Health Rep, 2017, 4(4): 286-293.
|
22 |
Lin Y, Qiu T, Wei G, et al. Role of Histone post-translational modifications in inflammatory diseases[J]. Front Immunol, 2022, 13: 852272.
|
23 |
Liaw A, Liu C, Bartold M, et al. Salivary histone deacetylase in periodontal disease: a cross-sectional pilot study[J]. J Periodontal Res, 2023, 58(2): 433-443.
|
24 |
Mohamed GA, Ibrahim SRM, El-Agamy DS, et al. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways[J]. J Ethnopharmacol, 2022, 292: 115223.
|
25 |
Di M, Zhang Q, Wang J, et al. Epigallocatechin-3-gallate (EGCG) attenuates inflammatory responses and oxidative stress in lipopolysaccharide (LPS)-induced endometritis via silent information regulator transcript-1 (SI-RT1)/nucleotide oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3) pathway[J]. J Biochem Mol Toxicol, 2022, 36(12): e23203.
|
26 |
He M, Chiang HH, Luo H, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance[J]. Cell Me-tab, 2020, 31(3): 580-591.
|
27 |
Hu T, Lu XY, Shi JJ, et al. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice[J]. J Cell Mol Med, 2020, 24(6): 3449-3459.
|
28 |
Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol, 2022, 13: 831168.
|
29 |
He S, Wang Y, Liu J, et al. Activating SIRT1 deacetylates NF-κB p65 to alleviate liver inflammation and fibrosis via inhibiting NLRP3 pathway in macrophages[J].Int J Med Sci, 2023, 20(4): 505-519.
|