1 |
Tsai P, Torabinejad M, Rice D, et al. Accuracy of cone-beam computed tomography and periapical radiography in detecting small periapical lesions[J]. J Endod, 2012, 38(7): 965-970.
|
2 |
Leonardi Dutra K, Haas L, Porporatti AL, et al. Diagnostic accuracy of cone-beam computed tomography and conventional radiography on apical periodontitis: a systematic review and Meta-analysis[J]. J Endod, 2016, 42(3): 356-364.
|
3 |
Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Dis, 2020, 26(1): 152-158.
|
4 |
Khanagar SB, Al-Ehaideb A, Maganur PC, et al. Deve-lopments, application, and performance of artificial intelligence in dentistry—a systematic review[J]. J Dent Sci, 2021, 16(1): 508-522.
|
5 |
Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80: 24-29.
|
6 |
Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morpho-logy of the mandibular first molar on panoramic radio-graphy[J]. Dentomaxillofac Radiol, 2019, 48(3): 2018-0218.
|
7 |
Valizadeh S, Goodini M, Ehsani S, et al. Designing of a computer software for detection of approximal caries in posterior teeth[J]. Iran J Radiol, 2015, 12(4): e16242.
|
8 |
Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Sci Rep, 2019, 9(1): 8495.
|
9 |
Johari M, Esmaeili F, Andalib A, et al. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study[J]. Dentomaxillofac Radiol, 2017, 46(2): 20160107.
|
10 |
Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw tumors[J]. Healthc Inform Res, 2018, 24(3): 236-241.
|
11 |
Lee JS, Adhikari S, Liu L, et al. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study[J]. Dentomaxillofac Radiol, 2019, 48(1): 20170344.
|
12 |
Murata M, Ariji Y, Ohashi Y, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography[J]. Oral Radiol, 2019, 35(3): 301-307.
|
13 |
Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod, 2019, 45(7): 917-922.e5.
|
14 |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[J]. arXiv e-prints, 2015: arXiv:.
|
15 |
Setzer FC, Shi KJ, Zhang Z, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images[J]. J Endod, 2020, 46(7): 987-993.
|
16 |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
|
17 |
Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017, 19: 221-248.
|