West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (3): 313-319.doi: 10.7518/hxkq.2021.03.011
Previous Articles Next Articles
Jia Mei’e1(), Li Zhiyong2, Xu Kai1, Wang Yiheng1, Yu Fei1, He Xiangyi1()
Received:
2020-04-15
Revised:
2021-02-19
Online:
2021-06-01
Published:
2021-05-26
Contact:
He Xiangyi
E-mail:jiame12@lzu.edu.cn;hexy@lzu.edu.cn
Supported by:
CLC Number:
Jia Mei’e, Li Zhiyong, Xu Kai, Wang Yiheng, Yu Fei, He Xiangyi. Biological effects of exosome derived from Cal27 on normal human gingival fibroblasts[J]. West China Journal of Stomatology, 2021, 39(3): 313-319.
Add to citation manager EndNote|Ris|BibTeX
1 | Ng JH, Iyer NG, Tan MH, et al. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study[J]. Head Neck, 2017, 39(2): 297-304. |
2 | Nilendu P, Sarode SC, Jahagirdar D, et al. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance[J]. Cell Oncol (Dordr), 2018, 41(4): 353-367. |
3 | Ding L, Ren J, Zhang DY, et al. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33[J]. Carcinogenesis, 2018, 39(3): 397-406. |
4 | 孟琳, 王丹丹, 布文奂, 等. 口腔鳞癌对牙龈成纤维细胞转化为肿瘤相关成纤维细胞的影响[J]. 口腔生物医学, 2017, 8(3): 136-140. |
Meng L, Wang DD, Bu WH, et al. The influence of oral squamous cell carcinomas on normal fibroblasts turning into oral carcinoma associated fibroblasts[J]. Oral Biomed, 2017, 8(3): 136-140. | |
5 | Jiang EH, Xu Z, Wang M, et al. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma[J]. FASEB J, 2019, 33(4): 5690-5703. |
6 | Pang WJ, Su JJ, Wang YL, et al. Pancreatic cancer-secre-ted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts[J]. Cancer Sci, 2015, 106(10): 1362-1369. |
7 | Wu XX, Showiheen SA, Sun AR, et al. Exosomes extraction and identification[J]. Methods Mol Biol, 2019, 2054: 81-91. |
8 | Routray S, Sunkavali A, Bari KA. Carcinoma-associated fibroblasts, its implication in head and neck squamous cell carcinoma: a mini review[J]. Oral Dis, 2014, 20(3): 246-253. |
9 | Santi A, Caselli A, Ranaldi F, et al. Cancer associated fi-broblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth[J]. Biochim Biophys Acta, 2015, 1853(12): 3211-3223. |
10 | Silva TA, Smuczek B, Valadão IC, et al. AHNAK ena-bles mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility[J]. Oncotarget, 2016, 7(31): 49998-50016. |
11 | Prime SS, Cirillo N, Hassona Y, et al. Fibroblast activation and senescence in oral cancer[J]. J Oral Pathol Med, 2017, 46(2): 82-88. |
12 | Lim KP, Cirillo N, Hassona Y, et al. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma[J]. J Pathol, 2011, 223(4): 459-469. |
13 | Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5): 392-401. |
14 | Kessenbrock K, Plaks V, Werb Z. Matrix metalloprotei-nases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67. |
15 | Ren ZH, Wu K, Yang R, et al. Differential expression of matrix metalloproteinases and miRNAs in the metastasis of oral squamous cell carcinoma[J]. BMC Oral Health, 2020, 20(1): 24. |
16 | Zhu X, Wang K, Zhang K, et al. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression[J]. Acta Biochim Biophys Sin (Shanghai), 2016, 48(5): 462-467. |
17 | Busek P, Balaziova E, Matrasova I, et al. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma[J]. Tumour Biol, 2016, 37(10): 13961-13971. |
18 | Zhou B, Chen WL, Wang YY, et al. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma[J]. J Oral Pathol Med, 2014, 43(8): 585-592. |
19 | Ba PF, Zhang XJ, Yu M, et al. Cancer associated fibroblasts are distinguishable from peri-tumor fibroblasts by biological characteristics in TSCC[J]. Oncol Lett, 2019, 18(3): 2484-2490. |
20 | Rønnov-Jessen L, Petersen OW. A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts[J]. J Cell Biol, 1996, 134(1): 67-80. |
21 | Moinfar F, Man YG, Arnould L, et al. Concurrent and independent genetic alterations in the stromal and epithe-lial cells of mammary carcinoma: implications for tumorigenesis[J]. Cancer Res, 2000, 60(9): 2562-2566. |
22 | Pang X, Tang YL, Liang XH. Transforming growth factor-β signaling in head and neck squamous cell carcinoma: insights into cellular responses[J]. Oncol Lett, 2018, 16(4): 4799-4806. |
23 | Li YY, Zhou CX, Gao Y. Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin[J]. Exp Cell Res, 2018, 369(1): 43-53. |
24 | Limoge M, Safina A, Beattie A, et al. Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells[J]. Oncotarget, 2017, 8(22): 35592-35608. |
25 | Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, et al. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer[J]. Onco Targets Ther, 2014, 7: 1327-1338. |
26 | Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer[J]. Review Front Oncol, 2014, 4: 361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||