1 |
Zubieta-Otero LF, Londoño-Restrepo SM, Lopez-Cha-vez G, et al. Comparative study of physicochemical pro-perties of bio-hydroxyapatite with commercial samples[J]. Mater Chem Phys, 2021, 259: 124201.
|
2 |
Lebre F, Sridharan R, Sawkins MJ, et al. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation[J]. Sci Rep, 2017, 7(1): 2922.
|
3 |
Gao Y, Gao S, Yao Y, et al. Hard tissue stability outside the buccal bone arch contour after guided bone regeneration in the anterior maxilla: a retrospective cohort radiographic study[J]. Clin Oral Implants Res, 2023, 34(12): 1373-1384.
|
4 |
Reznikov N, Shahar R, Weiner S. Bone hierarchical stru-cture in three dimensions[J]. Acta Biomater, 2014, 10(9): 3815-3826.
|
5 |
Wu S, Shan Z, Xie L, et al. Mesopore controls the respon-ses of blood clot-immune complex via modulating fibrin network[J]. Adv Sci (Weinh), 2022, 9(3): e2103608.
|
6 |
Lange T, Schilling AF, Peters F, et al. Proinflammatory and osteoclastogenic effects of beta-tricalciumphosphate and hydroxyapatite particles on human mononuclear cells in vitro [J]. Biomaterials, 2009, 30(29): 5312-5318.
|
7 |
Shanley LC, Mahon OR, O'Rourke SA, et al. Macrophage metabolic profile is altered by hydroxyapatite particle size[J]. Acta Biomater, 2023, 160: 311-321.
|
8 |
Su M, Li C, Deng S, et al. Balance between the CMC/ACP nano complex and blood assimilation orchestrates immunomodulation of the biomineralized collagen matrix[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58166-58180.
|
9 |
Zou Y, Shan Z, Han Z, et al. Regulating blood clot fibrin films to manipulate biomaterial-mediated foreign body responses[J]. Research (Wash D C), 2023, 6: 0225.
|
10 |
Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior[J]. Acta Biomater, 2013, 9(9): 8037-8045.
|
11 |
Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells[J]. Nature, 1998, 391(6667): 591-594.
|
12 |
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review[J]. Bioact Mater, 2017, 2(4): 224-247.
|
13 |
Sanz-Sánchez I, Sanz-Martín I, Ortiz-Vigón A, et al. Complications in bone-grafting procedures: classification and management[J]. Periodontol 2000, 2022, 88(1): 86-102.
|
14 |
Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries[J]. Biomater Res, 2019, 23: 9.
|
15 |
Tay JRH, Lu XJ, Lai WMC, et al. Clinical and histological sequelae of surgical complications in horizontal gui-ded bone regeneration: a systematic review and proposal for management[J]. Int J Implant Dent, 2020, 6(1): 76.
|
16 |
Wongin S, Narkbunnam R, Waikakul S, et al. Construction and evaluation of osteochondral-like tissue using chondrocyte sheet and cancellous bone[J]. Tissue Eng Part A, 2021, 27(3/4): 282-295.
|
17 |
Nagasaki T, Nagata F, Sakurai M, et al. Effects of pore distribution of hydroxyapatite particles on their protein adsorption behavior[J]. J Asian Ceram Soc, 2017, 5(2): 88-93.
|
18 |
Yang Q, Zhang Y, Liu M, et al. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy[J]. Anal Chim Acta, 2007, 597(1): 58-66.
|
19 |
Arimura S, Kawahara K, Biswas KK, et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation[J]. J Biomed Mater Res B Appl Biomater, 2007, 81(2): 456-461.
|
20 |
Liu Q, Chen Z, Gu H, et al. Preparation and characterization of fluorinated porcine hydroxyapatite[J]. Dent Mater J, 2012, 31(5): 742-750.
|
21 |
Qiao W, Liu R, Li Z, et al. Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration[J]. Biomater Sci, 2018, 6(11): 2951-2964.
|
22 |
Liu R, Qiao W, Huang B, et al. Fluorination enhances the osteogenic capacity of porcine hydroxyapatite[J]. Tis-sue Eng Part A, 2018, 24(15/16): 1207-1217.
|
23 |
Ferraz N, Carlsson J, Hong J, et al. Influence of nanoporesize on platelet adhesion and activation[J]. J Mater Sci Mater Med, 2008, 19(9): 3115-3121.
|
24 |
Zhou H, Wang C, Niu H, et al. A novel droplet-fabrica-ted mesoporous silica-based nanohybrid granules for he-morrhage control[J]. J Biomed Nanotechnol, 2018, 14(4): 649-661.
|
25 |
Han YC, Wang XY, Dai HL, et al. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions[J]. ACS Appl Mater Interfaces, 2012, 4(9): 4616-4622.
|
26 |
Zhao Y, Sun X, Zhang G, et al. Interaction of mesoporous silica nanoparticles with human red blood cell me-mbranes: size and surface effects[J]. ACS Nano, 2011, 5(2): 1366-1375.
|
27 |
Rouahi M, Gallet O, Champion E, et al. Influence of hydroxyapatite microstructure on human bone cell response[J]. J Biomed Mater Res A, 2006, 78(2): 222-235.
|
28 |
Ferraz N, Ott MK, Hong J. Time sequence of blood activation by nanoporous alumina: studies on platelets and complement system[J]. Microsc Res Tech, 2010, 73(12): 1101-1109.
|
29 |
Macrae FL, Duval C, Papareddy P, et al. A fibrin biofilm covers blood clots and protects from microbial invasion[J]. J Clin Invest, 2018, 128(8): 3356-3368.
|
30 |
Weisel JW, Litvinov RI. Keeping it clean: clot biofilm to wall out bacterial invasion[J]. J Thromb Haemost, 2018, 16(12): 2359-2361.
|
31 |
Weisel JW, Litvinov RI. Fibrin formation, structure and properties[M]//Parry DAD, Squire JM. Fibrous proteins: structures and mechanisms. Berlin: Springer, 2017: 405-456.
|
32 |
Garg K, Pullen NA, Oskeritzian CA, et al. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds[J]. Biomaterials, 2013, 34(18): 4439-4451.
|
33 |
Ooi CH, Ling YP, Abdullah WZ, et al. Physicochemical evaluation and in vitro hemocompatibility study on nanoporous hydroxyapatite[J]. J Mater Sci Mater Med, 2019, 30(4): 44.
|
34 |
Wang J, Wang L, Fan Y. Adverse biological effect of TiO2 and hydroxyapatite nanoparticles used in bone repair and replacement[J]. Int J Mol Sci, 2016, 17(6): E798.
|
35 |
Kandori K, Fudo A, Ishikawa T. Study on the particle texture dependence of protein adsorption by using synthetic micrometer-sized calcium hydroxyapatite particles[J]. Colloids Surf B Biointerfaces, 2002, 24(2): 145-153.
|
36 |
Kawachi G, Sasaki S, Nakahara K, et al. Porous apatite carrier prepared by hydrothermal method[J]. Key Eng Mater, 2006, 309-311(2): 935-938.
|
37 |
Aslam Khan MU, Haider A, Abd Razak SI, et al. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing[J]. J Tissue Eng Regen Med, 2021, 15(4): 322-335.
|
38 |
Santos C, Turiel S, Sousa Gomes P, et al. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior[J]. J Nanobiotechnol, 2018, 16(1): 27.
|
39 |
Cazalbou S, Combes C, Eichert D, et al. Adaptative physico-chemistry of bio-related calcium phosphates[J]. J Mater Chem, 2004, 14(14): 2148-53.
|
40 |
Rey C, Combes C. What bridges mineral platelets of bone[J]. Bonekey Rep, 2014, 3: 586.
|
41 |
Habraken W, Habibovic P, Epple M, et al. Calcium phosphates in biomedical applications: materials for the future[J]. Mater Today, 2016, 19(2): 69-87.
|
42 |
Beniash E, Metzler RA, Lam RS, et al. Transient amorphous calcium phosphate in forming enamel[J]. J Struct Biol, 2009, 166(2): 133-143.
|
43 |
Lyu Y, Asoh TA, Uyama H. Facile synthesis of a three-dimensional hydroxyapatite monolith for protein adsorption[J]. J Mater Chem B, 2021, 9(47): 9711-9719.
|
44 |
Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61: 922-939.
|
45 |
Mehmani A, Prodanovic M. The effect of microporosity on transport properties in porous media[J]. Adv Water Resour, 2014, 63: 104-119.
|
46 |
Pérez RA, Won JE, Knowles JC, et al. Naturally and synthetic smart composite biomaterials for tissue regeneration[J]. Adv Drug Deliv Rev, 2013, 65(4): 471-496.
|
47 |
Oh DS, Kim YJ, Hong MH, et al. Effect of capillary action on bone regeneration in micro-channeled ceramic scaffolds[J]. Ceram Int, 2014, 40(7): 9583-9589.
|
48 |
Li X, van Blitterswijk CA, Feng Q, et al. The effect of calcium phosphate microstructure on bone-related cells in vitro [J]. Biomaterials, 2008, 29(23): 3306-3316.
|
49 |
Wang Y, Zhang X, Shao J, et al. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis th-rough the Wnt/β-catenin pathway[J]. Sci Rep, 2017, 7(1): 3652.
|
50 |
Cicuéndez M, Malmsten M, Doadrio JC, et al. Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro[J]. J Mater Chem B, 2014, 2(1): 49-58.
|
51 |
Ain QU, Zeeshan M, Mazhar D, et al. QbD-based fabrication of biomimetic hydroxyapatite embedded gelatin nanoparticles for localized drug delivery against deteriorated arthritic joint architecture[J]. Macromol Biosci, 2024, 24(2): e2300336.
|
52 |
Ravichandran R, Gandhi S, Sundaramurthi D, et al. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration[J]. J Biomater Sci Polym Ed, 2013, 24(17): 1988-2005.
|
53 |
Hulbert SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses[J]. J Biomed Mater Res, 1970, 4(3): 433-456.
|
54 |
Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 1246-1262.
|
55 |
O'brien FJ. Biomaterials & scaffolds for tissue enginee-ring[J]. Mater Today, 2011, 14(3): 88-95.
|